Datatypes
rerun.datatypes
class Angle
Bases: AngleExt
Datatype: Angle in either radians or degrees.
inner: float = field(converter=float)
class-attribute
instance-attribute
Radians (float):
3D rotation angle in radians. Only one of degrees
or radians
should be set.
Degrees (float):
3D rotation angle in degrees. Only one of degrees
or radians
should be set.
class AnnotationInfo
Bases: AnnotationInfoExt
Datatype: Annotation info annotating a class id or key-point id.
Color and label will be used to annotate entities/keypoints which reference the id. The id refers either to a class or key-point id
def __init__(id, label=None, color=None)
Create a new instance of the AnnotationInfo datatype.
PARAMETER | DESCRIPTION |
---|---|
id |
TYPE:
|
label |
The label that will be shown in the UI.
TYPE:
|
color |
The color that will be applied to the annotated entity.
TYPE:
|
class ClassDescription
Bases: ClassDescriptionExt
Datatype: The description of a semantic Class.
If an entity is annotated with a corresponding ClassId
, rerun will use
the attached AnnotationInfo
to derive labels and colors.
Keypoints within an annotation class can similarly be annotated with a
KeypointId
in which case we should defer to the label and color for the
AnnotationInfo
specifically associated with the Keypoint.
Keypoints within the class can also be decorated with skeletal edges.
Keypoint-connections are pairs of KeypointId
s. If an edge is
defined, and both keypoints exist within the instance of the class, then the
keypoints should be connected with an edge. The edge should be labeled and
colored as described by the class's AnnotationInfo
.
Note that a ClassDescription
can be directly logged using rerun.log
.
This is equivalent to logging a rerun.AnnotationContext
containing
a single ClassDescription
.
def __init__(*, info, keypoint_annotations=[], keypoint_connections=[])
Create a new instance of the ClassDescription datatype.
PARAMETER | DESCRIPTION |
---|---|
info |
The
TYPE:
|
keypoint_annotations |
The
TYPE:
|
keypoint_connections |
The connections between keypoints.
TYPE:
|
class ClassDescriptionMapElem
Bases: ClassDescriptionMapElemExt
Datatype: A helper type for mapping class IDs to class descriptions.
This is internal to the AnnotationContext
structure.
def __init__(class_id, class_description)
Create a new instance of the ClassDescriptionMapElem datatype.
PARAMETER | DESCRIPTION |
---|---|
class_id |
The key: the class ID.
TYPE:
|
class_description |
The value: class name, color, etc.
TYPE:
|
class ClassId
Bases: ClassIdExt
Datatype: A 16-bit ID representing a type of semantic class.
def __init__(id)
Create a new instance of the ClassId datatype.
class Float32
Datatype: A single-precision 32-bit IEEE 754 floating point number.
def __init__(value)
Create a new instance of the Float32 datatype.
class KeypointId
Bases: KeypointIdExt
Datatype: A 16-bit ID representing a type of semantic keypoint within a class.
KeypointId
s are only meaningful within the context of a [rerun.datatypes.ClassDescription
].
Used to look up an [rerun.datatypes.AnnotationInfo
] for a Keypoint within the
[rerun.components.AnnotationContext
].
def __init__(id)
Create a new instance of the KeypointId datatype.
class KeypointPair
Bases: KeypointPairExt
Datatype: A connection between two Keypoints
.
def __init__(keypoint0, keypoint1)
Create a new instance of the KeypointPair datatype.
PARAMETER | DESCRIPTION |
---|---|
keypoint0 |
The first point of the pair.
TYPE:
|
keypoint1 |
The second point of the pair.
TYPE:
|
class Mat3x3
Bases: Mat3x3Ext
Datatype: A 3x3 Matrix.
Matrices in Rerun are stored as flat list of coefficients in column-major order:
column 0 column 1 column 2
-------------------------------------------------
row 0 | flat_columns[0] flat_columns[3] flat_columns[6]
row 1 | flat_columns[1] flat_columns[4] flat_columns[7]
row 2 | flat_columns[2] flat_columns[5] flat_columns[8]
However, construction is done from a list of rows, which follows NumPy's convention:
np.testing.assert_array_equal(
rr.datatypes.Mat3x3([1, 2, 3, 4, 5, 6, 7, 8, 9]).flat_columns, np.array([1, 4, 7, 2, 5, 8, 3, 6, 9], dtype=np.float32)
)
np.testing.assert_array_equal(
rr.datatypes.Mat3x3([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).flat_columns,
np.array([1, 4, 7, 2, 5, 8, 3, 6, 9], dtype=np.float32),
)
columns
parameter:
np.testing.assert_array_equal(
rr.datatypes.Mat3x3(columns=[1, 2, 3, 4, 5, 6, 7, 8, 9]).flat_columns,
np.array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.float32),
)
np.testing.assert_array_equal(
rr.datatypes.Mat3x3(columns=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]).flat_columns,
np.array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.float32),
)
def __init__(rows=None, *, columns=None)
class Mat4x4
Bases: Mat4x4Ext
Datatype: A 4x4 Matrix.
Matrices in Rerun are stored as flat list of coefficients in column-major order:
column 0 column 1 column 2 column 3
--------------------------------------------------------------------
row 0 | flat_columns[0] flat_columns[4] flat_columns[8] flat_columns[12]
row 1 | flat_columns[1] flat_columns[5] flat_columns[9] flat_columns[13]
row 2 | flat_columns[2] flat_columns[6] flat_columns[10] flat_columns[14]
row 3 | flat_columns[3] flat_columns[7] flat_columns[11] flat_columns[15]
However, construction is done from a list of rows, which follows NumPy's convention:
np.testing.assert_array_equal(
rr.datatypes.Mat4x4([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]).flat_columns,
np.array([1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 4, 8, 12, 16], dtype=np.float32),
)
np.testing.assert_array_equal(
rr.datatypes.Mat4x4([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]).flat_columns,
np.array([1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 4, 8, 12, 16], dtype=np.float32),
)
columns
parameter:
np.testing.assert_array_equal(
rr.datatypes.Mat4x4(columns=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]).flat_columns,
np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], dtype=np.float32),
)
np.testing.assert_array_equal(
rr.datatypes.Mat4x4(columns=[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]).flat_columns,
np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], dtype=np.float32),
)
def __init__(rows=None, *, columns=None)
class Material
Bases: MaterialExt
Datatype: Material properties of a mesh.
def __init__(albedo_factor=None)
Create a new instance of the Material datatype.
PARAMETER | DESCRIPTION |
---|---|
albedo_factor |
Optional color multiplier.
TYPE:
|
class MeshProperties
Bases: MeshPropertiesExt
Datatype: Optional triangle indices for a mesh.
def __init__(indices=None)
Create a new instance of the MeshProperties datatype.
PARAMETER | DESCRIPTION |
---|---|
indices |
A flattened array of vertex indices that describe the mesh's triangles. Its length must be divisible by 3.
TYPE:
|
class Quaternion
Bases: QuaternionExt
Datatype: A Quaternion represented by 4 real numbers.
Note: although the x,y,z,w components of the quaternion will be passed through to the datastore as provided, when used in the viewer Quaternions will always be normalized.
class Rgba32
Bases: Rgba32Ext
Datatype: An RGBA color with unmultiplied/separate alpha, in sRGB gamma space with linear alpha.
The color is stored as a 32-bit integer, where the most significant
byte is R
and the least significant byte is A
.
Float colors are assumed to be in 0-1 gamma sRGB space. All other colors are assumed to be in 0-255 gamma sRGB space. If there is an alpha, we assume it is in linear space, and separate (NOT pre-multiplied).
def __init__(rgba)
Create a new instance of the Rgba32 datatype.
class Rotation3D
Bases: Rotation3DExt
Datatype: A 3D rotation.
inner: Union[datatypes.Quaternion, datatypes.RotationAxisAngle] = field(converter=Rotation3DExt.inner__field_converter_override)
class-attribute
instance-attribute
Quaternion (datatypes.Quaternion): Rotation defined by a quaternion.
AxisAngle (datatypes.RotationAxisAngle): Rotation defined with an axis and an angle.
class RotationAxisAngle
Bases: RotationAxisAngleExt
Datatype: 3D rotation represented by a rotation around a given axis.
def __init__(axis, angle=None, *, radians=None, degrees=None)
Create a new instance of the RotationAxisAngle datatype.
PARAMETER | DESCRIPTION |
---|---|
axis |
Axis to rotate around. This is not required to be normalized. If normalization fails (typically because the vector is length zero), the rotation is silently ignored.
TYPE:
|
angle |
How much to rotate around the axis.
TYPE:
|
radians |
How much to rotate around the axis, in radians. Specify this instead of
TYPE:
|
degrees |
How much to rotate around the axis, in radians. Specify this instead of
TYPE:
|
class Scale3D
Bases: Scale3DExt
Datatype: 3D scaling factor, part of a transform representation.
Example
# uniform scaling
scale = rr.datatypes.Scale3D(3.)
# non-uniform scaling
scale = rr.datatypes.Scale3D([1, 1, -1])
scale = rr.datatypes.Scale3D(rr.datatypes.Vec3D([1, 1, -1]))
inner: Union[datatypes.Vec3D, float] = field(converter=Scale3DExt.inner__field_converter_override)
class-attribute
instance-attribute
ThreeD (datatypes.Vec3D): Individual scaling factors for each axis, distorting the original object.
Uniform (float): Uniform scaling factor along all axis.
class TensorBuffer
Bases: TensorBufferExt
Datatype: The underlying storage for a Tensor
.
Tensor elements are stored in a contiguous buffer of a single type.
inner: Union[npt.NDArray[np.float16], npt.NDArray[np.float32], npt.NDArray[np.float64], npt.NDArray[np.int16], npt.NDArray[np.int32], npt.NDArray[np.int64], npt.NDArray[np.int8], npt.NDArray[np.uint16], npt.NDArray[np.uint32], npt.NDArray[np.uint64], npt.NDArray[np.uint8]] = field(converter=TensorBufferExt.inner__field_converter_override)
class-attribute
instance-attribute
U8 (npt.NDArray[np.uint8]):
U16 (npt.NDArray[np.uint16]):
U32 (npt.NDArray[np.uint32]):
U64 (npt.NDArray[np.uint64]):
I8 (npt.NDArray[np.int8]):
I16 (npt.NDArray[np.int16]):
I32 (npt.NDArray[np.int32]):
I64 (npt.NDArray[np.int64]):
F16 (npt.NDArray[np.float16]):
F32 (npt.NDArray[np.float32]):
F64 (npt.NDArray[np.float64]):
JPEG (npt.NDArray[np.uint8]):
NV12 (npt.NDArray[np.uint8]):
class TensorData
Bases: TensorDataExt
Datatype: A multi-dimensional Tensor
of data.
The number of dimensions and their respective lengths is specified by the shape
field.
The dimensions are ordered from outermost to innermost. For example, in the common case of
a 2D RGB Image, the shape would be [height, width, channel]
.
These dimensions are combined with an index to look up values from the buffer
field,
which stores a contiguous array of typed values.
def __init__(*, shape=None, buffer=None, array=None, dim_names=None)
Construct a TensorData
object.
The TensorData
object is internally represented by three fields: shape
and buffer
.
This constructor provides additional arguments 'array', and 'dim_names'. When passing in a
multi-dimensional array such as a np.ndarray
, the shape
and buffer
fields will be
populated automagically.
PARAMETER | DESCRIPTION |
---|---|
self |
The TensorData object to construct.
TYPE:
|
shape |
The shape of the tensor. If None, and an array is proviced, the shape will be inferred from the shape of the array.
TYPE:
|
buffer |
The buffer of the tensor. If None, and an array is provided, the buffer will be generated from the array.
TYPE:
|
array |
A numpy array (or The array of the tensor. If None, the array will be inferred from the buffer.
TYPE:
|
dim_names |
The names of the tensor dimensions when generating the shape from an array. |
class TensorDimension
Datatype: A single dimension within a multi-dimensional tensor.
class Transform3D
Bases: Transform3DExt
Datatype: Representation of a 3D affine transform.
inner: Union[datatypes.TranslationAndMat3x3, datatypes.TranslationRotationScale3D] = field()
class-attribute
instance-attribute
TranslationAndMat3x3 (datatypes.TranslationAndMat3x3):
TranslationRotationScale (datatypes.TranslationRotationScale3D):
class TranslationAndMat3x3
Bases: TranslationAndMat3x3Ext
Datatype: Representation of an affine transform via a 3x3 affine matrix paired with a translation.
First applies the matrix, then the translation.
def __init__(translation=None, mat3x3=None, *, from_parent=False)
Create a new instance of the TranslationAndMat3x3 datatype.
PARAMETER | DESCRIPTION |
---|---|
translation |
3D translation, applied after the matrix.
TYPE:
|
mat3x3 |
3x3 matrix for scale, rotation & shear.
TYPE:
|
from_parent |
If true, the transform maps from the parent space to the space where the transform was logged. Otherwise, the transform maps from the space to its parent.
TYPE:
|
class TranslationRotationScale3D
Bases: TranslationRotationScale3DExt
Datatype: Representation of an affine transform via separate translation, rotation & scale.
class UInt32
Datatype: A 32bit unsigned integer.
def __init__(value)
Create a new instance of the UInt32 datatype.
class UVec2D
Datatype: A uint32 vector in 2D space.
def __init__(xy)
Create a new instance of the UVec2D datatype.
class UVec3D
Datatype: A uint32 vector in 3D space.
def __init__(xyz)
Create a new instance of the UVec3D datatype.
class UVec4D
Datatype: A uint vector in 4D space.
def __init__(xyzw)
Create a new instance of the UVec4D datatype.
class Utf8
Bases: Utf8Ext
Datatype: A string of text, encoded as UTF-8.
def __init__(value)
Create a new instance of the Utf8 datatype.
class Vec2D
Bases: Vec2DExt
Datatype: A vector in 2D space.
def __init__(xy)
Create a new instance of the Vec2D datatype.
class Vec3D
Bases: Vec3DExt
Datatype: A vector in 3D space.
def __init__(xyz)
Create a new instance of the Vec3D datatype.
class Vec4D
Bases: Vec4DExt
Datatype: A vector in 4D space.
def __init__(xyzw)
Create a new instance of the Vec4D datatype.