re_data_loader/lerobot.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
//! A module for loading and working with `LeRobot` datasets.
//!
//! This module provides functionality to identify and parse `LeRobot` datasets,
//! which consist of metadata and episode data stored in a structured format.
//!
//! # Important
//!
//! Currently this only supports v2 `LeRobot` datasets!
//!
//! See [`LeRobotDataset`] for more information on the dataset format.
use std::borrow::Cow;
use std::fmt;
use std::fs::File;
use std::io::BufReader;
use std::path::{Path, PathBuf};
use ahash::HashMap;
use arrow::array::RecordBatch;
use parquet::arrow::arrow_reader::ParquetRecordBatchReaderBuilder;
use serde::de::{DeserializeOwned, MapAccess, SeqAccess, Visitor};
use serde::{Deserialize, Deserializer, Serialize};
/// Check whether the provided path contains a `LeRobot` dataset.
pub fn is_lerobot_dataset(path: impl AsRef<Path>) -> bool {
is_v1_lerobot_dataset(path.as_ref()) || is_v2_lerobot_dataset(path.as_ref())
}
/// Check whether the provided path contains a v2 `LeRobot` dataset.
pub fn is_v2_lerobot_dataset(path: impl AsRef<Path>) -> bool {
let path = path.as_ref();
if !path.is_dir() {
return false;
}
// v2 `LeRobot` datasets store the metadata in a `meta` directory,
// instead of the `meta_data` directory used in v1 datasets.
has_sub_directories(&["meta", "data"], path)
}
/// Check whether the provided path contains a v1 `LeRobot` dataset.
pub fn is_v1_lerobot_dataset(path: impl AsRef<Path>) -> bool {
let path = path.as_ref();
if !path.is_dir() {
return false;
}
// v1 `LeRobot` datasets stored the metadata in a `meta_data` directory,
// instead of the `meta` directory used in v2 datasets.
has_sub_directories(&["meta_data", "data"], path)
}
fn has_sub_directories(directories: &[&str], path: impl AsRef<Path>) -> bool {
directories.iter().all(|subdir| {
let subpath = path.as_ref().join(subdir);
// check that the sub directory exists and is not empty
subpath.is_dir()
&& subpath
.read_dir()
.is_ok_and(|mut contents| contents.next().is_some())
})
}
/// Errors that might happen when loading data through a [`crate::loader_lerobot::LeRobotDatasetLoader`].
#[derive(thiserror::Error, Debug)]
pub enum LeRobotError {
#[error("IO error occurred on path: {1}")]
IO(#[source] std::io::Error, std::path::PathBuf),
#[error(transparent)]
Json(#[from] serde_json::Error),
#[error(transparent)]
Parquet(#[from] parquet::errors::ParquetError),
#[error(transparent)]
Arrow(#[from] arrow::error::ArrowError),
#[error("Invalid feature key: {0}")]
InvalidFeatureKey(String),
#[error("Missing dataset info: {0}")]
MissingDatasetInfo(String),
#[error(
"Invalid feature dtype, expected {key} to be of type {expected:?}, but got {actual:?}"
)]
InvalidFeatureDtype {
key: String,
expected: DType,
actual: DType,
},
#[error("Invalid chunk index: {0}")]
InvalidChunkIndex(usize),
#[error("Invalid episode index: {0:?}")]
InvalidEpisodeIndex(EpisodeIndex),
#[error("Episode {0:?} data file does not contain any records")]
EmptyEpisode(EpisodeIndex),
}
/// A `LeRobot` dataset consists of structured metadata and recorded episode data stored in
/// Parquet files.
///
/// # `LeRobot` Dataset Format
///
/// The dataset follows a standardized directory layout, typically organized as follows:
///
/// ```text
/// .
/// ├── README.md
/// ├── data
/// │ └── chunk-000
/// │ ├── episode_000000.parquet
/// │ ├── episode_000001.parquet
/// │ ├── …
/// ├── meta
/// │ ├── episodes.jsonl
/// │ ├── info.json
/// │ ├── stats.json
/// │ └── tasks.jsonl
/// └── videos
/// └── chunk-000
/// └── observation.image
/// ├── episode_000000.mp4
/// ├── episode_000001.mp4
/// ├── …
/// ```
///
/// ## File layout
///
/// - `data/`: Stores episode data in Parquet format, organized in chunks.
/// - `meta/`: Contains metadata files:
/// - `info.json`: General dataset metadata (robot type, number of episodes, etc.).
/// - `episodes.jsonl`: Episode-specific metadata (tasks, number of frames, etc.).
/// - `tasks.jsonl`: Task definitions for episodes.
/// - `stats.json`: Summary statistics of dataset features.
/// - `videos/`: Optional directory storing video observations for episodes, organized similarly to `data/`.
///
/// Each episode is identified by a unique index and mapped to its corresponding chunk, based on the number of episodes
/// per chunk (which can be found in `meta/info.json`).
#[derive(Debug, Clone)]
pub struct LeRobotDataset {
pub path: PathBuf,
pub metadata: LeRobotDatasetMetadata,
}
impl LeRobotDataset {
/// Loads a `LeRobotDataset` from a directory.
///
/// This method initializes a dataset by reading its metadata from the `meta/` directory.
///
/// # Important
///
/// Currently, this only supports v2 `LeRobot` datasets.
pub fn load_from_directory(path: impl AsRef<Path>) -> Result<Self, LeRobotError> {
let path = path.as_ref();
let metadatapath = path.join("meta");
let metadata = LeRobotDatasetMetadata::load_from_directory(&metadatapath)?;
Ok(Self {
path: path.to_path_buf(),
metadata,
})
}
/// Read the Parquet data file for the provided episode.
pub fn read_episode_data(&self, episode: EpisodeIndex) -> Result<RecordBatch, LeRobotError> {
if self.metadata.episodes.get(episode.0).is_none() {
return Err(LeRobotError::InvalidEpisodeIndex(episode));
};
let episode_data_path = self.metadata.info.episode_data_path(episode)?;
let episode_parquet_file = self.path.join(episode_data_path);
let file = File::open(&episode_parquet_file)
.map_err(|err| LeRobotError::IO(err, episode_parquet_file))?;
let mut reader = ParquetRecordBatchReaderBuilder::try_new(file)?.build()?;
reader
.next()
.transpose()
.map(|batch| batch.ok_or(LeRobotError::EmptyEpisode(episode)))
.map_err(LeRobotError::Arrow)?
}
/// Read video feature for the provided episode.
pub fn read_episode_video_contents(
&self,
observation_key: &str,
episode: EpisodeIndex,
) -> Result<Cow<'_, [u8]>, LeRobotError> {
let video_file = self.metadata.info.video_path(observation_key, episode)?;
let videopath = self.path.join(video_file);
let contents = {
re_tracing::profile_scope!("fs::read");
std::fs::read(&videopath).map_err(|err| LeRobotError::IO(err, videopath))?
};
Ok(Cow::Owned(contents))
}
/// Retrieve the task using the provided task index.
pub fn task_by_index(&self, task: TaskIndex) -> Option<&LeRobotDatasetTask> {
self.metadata.tasks.get(task.0)
}
}
/// Metadata for a `LeRobot` dataset.
///
/// This is a wrapper struct for the metadata files in the `meta` directory of a
/// `LeRobot` dataset. For more see [`LeRobotDataset`].
#[derive(Debug, Clone)]
#[allow(dead_code)] // TODO(gijsd): The list of tasks is not used yet!
pub struct LeRobotDatasetMetadata {
pub info: LeRobotDatasetInfo,
pub episodes: Vec<LeRobotDatasetEpisode>,
pub tasks: Vec<LeRobotDatasetTask>,
}
impl LeRobotDatasetMetadata {
/// Loads all metadata files from the provided directory.
///
/// This method reads dataset metadata from JSON and JSONL files stored in the `meta/` directory.
/// It retrieves general dataset information, a list of recorded episodes, and defined tasks.
pub fn load_from_directory(metadir: impl AsRef<Path>) -> Result<Self, LeRobotError> {
let metadir = metadir.as_ref();
let info = LeRobotDatasetInfo::load_from_json_file(metadir.join("info.json"))?;
let mut episodes = load_jsonl_file(metadir.join("episodes.jsonl"))?;
let mut tasks = load_jsonl_file(metadir.join("tasks.jsonl"))?;
episodes.sort_by_key(|e: &LeRobotDatasetEpisode| e.index);
tasks.sort_by_key(|e: &LeRobotDatasetTask| e.index);
Ok(Self {
info,
episodes,
tasks,
})
}
}
/// `LeRobot` dataset metadata.
///
/// This struct contains the metadata for a `LeRobot` dataset, and is loaded from the `meta/info.json` file
/// of the dataset.
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct LeRobotDatasetInfo {
/// The type of the robot.
pub robot_type: String,
/// The version of the `LeRobot` codebase the dataset was created for.
pub codebase_version: String,
/// The total number of unique episodes in the dataset.
pub total_episodes: usize,
/// The total number of unique frames in the dataset.
pub total_frames: usize,
/// The total number of unique tasks in the dataset.
pub total_tasks: usize,
/// The total amount of videos in the dataset.
pub total_videos: usize,
/// The total number of unique chunks in the dataset.
pub total_chunks: usize,
/// The amount of episodes per chunk.
///
/// This is used to determine the path to video and data files.
pub chunks_size: usize,
/// The path template for accessing episode data files.
pub data_path: String,
/// The path template for accessing video files for an episode.
pub video_path: Option<String>,
/// The path template for accessing image files for an episode.
pub image_path: Option<String>,
/// The frame rate of the recorded episode data.
pub fps: usize,
/// A mapping of feature names to their respective [`Feature`] definitions.
pub features: HashMap<String, Feature>,
}
impl LeRobotDatasetInfo {
/// Loads `LeRobotDatasetInfo` from a JSON file.
///
/// The `LeRobot` dataset info file is typically stored under `meta/info.json`.
pub fn load_from_json_file(filepath: impl AsRef<Path>) -> Result<Self, LeRobotError> {
let info_file = File::open(filepath.as_ref())
.map_err(|err| LeRobotError::IO(err, filepath.as_ref().to_owned()))?;
let reader = BufReader::new(info_file);
serde_json::from_reader(reader).map_err(|err| err.into())
}
/// Retrieve the metadata for a specific feature.
pub fn feature(&self, feature_key: &str) -> Option<&Feature> {
self.features.get(feature_key)
}
/// Computes the storage chunk index for a given episode.
///
/// Episodes are organized into chunks to optimize storage and retrieval. This method determines
/// which chunk a specific episode belongs to based on the dataset's chunk size.
pub fn chunk_index(&self, episode: EpisodeIndex) -> Result<usize, LeRobotError> {
if episode.0 > self.total_episodes {
return Err(LeRobotError::InvalidEpisodeIndex(episode));
}
// chunk indices start at 0
let chunk_idx = episode.0 / self.chunks_size;
if chunk_idx < self.total_chunks {
Ok(chunk_idx)
} else {
Err(LeRobotError::InvalidChunkIndex(chunk_idx))
}
}
/// Generates the file path for a given episode's Parquet data.
pub fn episode_data_path(&self, episode: EpisodeIndex) -> Result<PathBuf, LeRobotError> {
let chunk = self.chunk_index(episode)?;
// TODO(gijsd): Need a better way to handle this, as this only supports the default.
Ok(self
.data_path
.replace("{episode_chunk:03d}", &format!("{chunk:03}"))
.replace("{episode_index:06d}", &format!("{:06}", episode.0))
.into())
}
/// Generates the file path for a video observation of a given episode.
pub fn video_path(
&self,
feature_key: &str,
episode: EpisodeIndex,
) -> Result<PathBuf, LeRobotError> {
let chunk = self.chunk_index(episode)?;
let feature = self
.feature(feature_key)
.ok_or(LeRobotError::InvalidFeatureKey(feature_key.to_owned()))?;
if feature.dtype != DType::Video {
return Err(LeRobotError::InvalidFeatureDtype {
key: feature_key.to_owned(),
expected: DType::Video,
actual: feature.dtype,
});
}
// TODO(gijsd): Need a better way to handle this, as this only supports the default.
self.video_path
.as_ref()
.ok_or_else(|| LeRobotError::MissingDatasetInfo("video_path".to_owned()))
.map(|path| {
path.replace("{episode_chunk:03d}", &format!("{chunk:03}"))
.replace("{episode_index:06d}", &format!("{:06}", episode.0))
.replace("{video_key}", feature_key)
.into()
})
}
}
/// Feature definition for a `LeRobot` dataset.
///
/// Each feature represents a data stream recorded during an episode, of a specific data type (`dtype`)
/// and dimensionality (`shape`).
///
/// For example, a shape of `[3, 224, 224]` for a [`DType::Image`] feature denotes a 3-channel (e.g. RGB)
/// image with a height and width of 224 pixels each.
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct Feature {
pub dtype: DType,
pub shape: Vec<usize>,
pub names: Option<Names>,
}
impl Feature {
/// Get the channel dimension for this [`Feature`].
///
/// Returns the number of channels in the feature's data representation.
///
/// # Note
///
/// This is primarily intended for [`DType::Image`] and [`DType::Video`] features,
/// where it represents color channels (e.g., 3 for RGB, 4 for RGBA).
/// For other feature types, this function returns the size of the last dimension
/// from the feature's shape.
pub fn channel_dim(&self) -> usize {
// first check if there's a "channels" name, if there is we can use that index.
if let Some(names) = &self.names {
if let Some(channel_idx) = names.0.iter().position(|name| name == "channels") {
// If channel_idx is within bounds of shape, return that dimension
if channel_idx < self.shape.len() {
return self.shape[channel_idx];
}
}
}
// Default to the last dimension if no channels name is found
// or if the found index is out of bounds
self.shape.last().copied().unwrap_or(0)
}
}
/// Data types supported for features in a `LeRobot` dataset.
#[derive(Serialize, Deserialize, Debug, Clone, Copy, PartialEq, Eq)]
#[serde(rename_all = "snake_case")]
pub enum DType {
Video,
Image,
Bool,
Float32,
Float64,
Int16,
Int64,
String,
}
/// Name metadata for a feature in the `LeRobot` dataset.
///
/// The name metadata can consist of
/// - A flat list of names for each dimension of a feature (e.g., `["height", "width", "channel"]`).
/// - A nested list of names for each dimension of a feature (e.g., `[[""kLeftShoulderPitch", "kLeftShoulderRoll"]]`)
/// - A map with a string array value (e.g., `{ "motors": ["motor_0", "motor_1", ...] }` or `{ "axes": ["x", "y", "z"] }`).
#[derive(Debug, Clone, PartialEq, Eq, Serialize)]
pub struct Names(Vec<String>);
impl Names {
/// Retrieves the name corresponding to a specific index.
///
/// Returns `None` if the index is out of bounds.
pub fn name_for_index(&self, index: usize) -> Option<&String> {
self.0.get(index)
}
}
/// Visitor implementation for deserializing the [`Names`] type.
///
/// Handles multiple representation formats:
/// - Flat string arrays: `["x", "y", "z"]`
/// - Nested string arrays: `[["motor_1", "motor_2"]]`
/// - Single-entry objects: `{"motors": ["motor_1", "motor_2"]}` or `{"axes": null}`
///
/// See the `Names` type documentation for more details on the supported formats.
struct NamesVisitor;
impl<'de> Visitor<'de> for NamesVisitor {
type Value = Names;
fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter.write_str(
"a flat string array, a nested string array, or a single-entry object with a string array or null value",
)
}
/// Handle sequences:
/// - Flat string arrays: `["x", "y", "z"]`
/// - Nested string arrays: `[["motor_1", "motor_2"]]`
fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
where
A: SeqAccess<'de>,
{
// Helper enum to deserialize sequence elements
#[derive(Deserialize)]
#[serde(untagged)]
enum ListItem {
Str(String),
List(Vec<String>),
}
/// Enum to track the list type
#[derive(PartialEq)]
enum ListType {
Undetermined,
Flat,
Nested,
}
let mut names = Vec::new();
let mut determined_type = ListType::Undetermined;
while let Some(item) = seq.next_element::<ListItem>()? {
match item {
ListItem::Str(s) => {
if determined_type == ListType::Nested {
return Err(serde::de::Error::custom(
"Cannot mix nested lists with flat strings within names array",
));
}
determined_type = ListType::Flat;
names.push(s);
}
ListItem::List(list) => {
if determined_type == ListType::Flat {
return Err(serde::de::Error::custom(
"Cannot mix flat strings and nested lists within names array",
));
}
determined_type = ListType::Nested;
// Flatten the nested list
names.extend(list);
}
}
}
Ok(Names(names))
}
/// Handle single-entry objects: `{"motors": ["motor_1", "motor_2"]}` or `{"axes": null}`
fn visit_map<A>(self, mut map: A) -> Result<Self::Value, A::Error>
where
A: MapAccess<'de>,
{
let mut names_vec: Option<Vec<String>> = None;
let mut entry_count = 0;
// We expect exactly one entry.
while let Some((_key, value)) = map.next_entry::<String, Option<Vec<String>>>()? {
entry_count += 1;
if entry_count > 1 {
// Consume remaining entries to be a good citizen before erroring
while map
.next_entry::<serde::de::IgnoredAny, serde::de::IgnoredAny>()?
.is_some()
{}
return Err(serde::de::Error::invalid_length(
entry_count,
&"a Names object with exactly one entry.",
));
}
names_vec = Some(value.unwrap_or_default());
}
Ok(Names(names_vec.unwrap_or_default()))
}
}
impl<'de> Deserialize<'de> for Names {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
deserializer.deserialize_any(NamesVisitor)
}
}
// TODO(gijsd): Do we want to stream in episodes or tasks?
#[cfg(not(target_arch = "wasm32"))]
fn load_jsonl_file<D>(filepath: impl AsRef<Path>) -> Result<Vec<D>, LeRobotError>
where
D: DeserializeOwned,
{
let entries = std::fs::read_to_string(filepath.as_ref())
.map_err(|err| LeRobotError::IO(err, filepath.as_ref().to_owned()))?
.lines()
.map(|line| serde_json::from_str(line))
.collect::<Result<Vec<D>, _>>()?;
Ok(entries)
}
/// Newtype wrapper for episode indices.
#[derive(Debug, Serialize, Deserialize, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[serde(transparent)]
pub struct EpisodeIndex(pub usize);
/// An episode in a `LeRobot` dataset.
///
/// Each episode contains its index, a list of associated tasks, and its total length in frames.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct LeRobotDatasetEpisode {
#[serde(rename = "episode_index")]
pub index: EpisodeIndex,
pub tasks: Vec<String>,
pub length: u32,
}
/// Newtype wrapper for task indices.
#[derive(Debug, Serialize, Deserialize, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[serde(transparent)]
pub struct TaskIndex(pub usize);
/// A task in a `LeRobot` dataset.
///
/// Each task consists of its index and a task description.
#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct LeRobotDatasetTask {
#[serde(rename = "task_index")]
pub index: TaskIndex,
pub task: String,
}
#[cfg(test)]
mod tests {
use super::*;
use serde_json;
#[test]
fn test_deserialize_flat_list() {
let json = r#"["a", "b", "c"]"#;
let expected = Names(vec!["a".to_owned(), "b".to_owned(), "c".to_owned()]);
let names: Names = serde_json::from_str(json).unwrap();
assert_eq!(names, expected);
}
#[test]
fn test_deserialize_nested_list() {
let json = r#"[["a", "b"], ["c"]]"#;
let expected = Names(vec!["a".to_owned(), "b".to_owned(), "c".to_owned()]);
let names: Names = serde_json::from_str(json).unwrap();
assert_eq!(names, expected);
}
#[test]
fn test_deserialize_empty_nested_list() {
let json = r#"[[], []]"#;
let expected = Names(vec![]);
let names: Names = serde_json::from_str(json).unwrap();
assert_eq!(names, expected);
}
#[test]
fn test_deserialize_empty_list() {
let json = r#"[]"#;
let expected = Names(vec![]);
let names: Names = serde_json::from_str(json).unwrap();
assert_eq!(names, expected);
}
#[test]
fn test_deserialize_object_with_list() {
let json = r#"{ "axes": ["x", "y", "z"] }"#;
let expected = Names(vec!["x".to_owned(), "y".to_owned(), "z".to_owned()]);
let names: Names = serde_json::from_str(json).unwrap();
assert_eq!(names, expected);
}
#[test]
fn test_deserialize_object_with_empty_list() {
let json = r#"{ "motors": [] }"#;
let expected = Names(vec![]);
let names: Names = serde_json::from_str(json).unwrap();
assert_eq!(names, expected);
}
#[test]
fn test_deserialize_object_with_null() {
let json = r#"{ "axes": null }"#;
let expected = Names(vec![]); // Null results in an empty list
let names: Names = serde_json::from_str(json).unwrap();
assert_eq!(names, expected);
}
#[test]
fn test_deserialize_empty_object() {
// Empty object results in empty list.
let json = r#"{}"#;
let expected = Names(vec![]);
let names: Names = serde_json::from_str(json).unwrap();
assert_eq!(names, expected);
}
#[test]
fn test_deserialize_error_mixed_list() {
let json = r#"["a", ["b"]]"#; // Mixed flat and nested
let result: Result<Names, _> = serde_json::from_str(json);
assert!(result.is_err());
assert!(result
.unwrap_err()
.to_string()
.contains("Cannot mix flat strings and nested lists"));
}
#[test]
fn test_deserialize_error_object_multiple_entries() {
let json = r#"{ "axes": ["x"], "motors": ["m"] }"#;
let result: Result<Names, _> = serde_json::from_str(json);
assert!(result.is_err());
assert!(result
.unwrap_err()
.to_string()
.contains("a Names object with exactly one entry"));
}
}