re_datafusion/
dataframe_query_provider.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
use std::collections::BTreeMap;
use std::sync::Arc;

use arrow::array::{new_null_array, Array, RecordBatch, StringArray};
use arrow::datatypes::{DataType, Field, Schema, SchemaRef};
use datafusion::{
    catalog::{streaming::StreamingTable, TableProvider},
    error::DataFusionError,
    execution::SendableRecordBatchStream,
    physical_plan::{stream::RecordBatchStreamAdapter, streaming::PartitionStream},
};

use re_dataframe::{QueryEngine, QueryExpression, StorageEngine};
use re_protos::manifest_registry::v1alpha1::DATASET_MANIFEST_ID_FIELD_NAME;

pub struct DataframeQueryTableProvider {
    pub schema: SchemaRef,
    query_expression: QueryExpression,
    query_engines: BTreeMap<String, QueryEngine<StorageEngine>>,
}

impl DataframeQueryTableProvider {
    pub fn new(
        query_engines: BTreeMap<String, QueryEngine<StorageEngine>>,
        query_expression: QueryExpression,
    ) -> Result<Self, DataFusionError> {
        let all_schemas = query_engines
            .values()
            .map(|engine| (**engine.query(query_expression.clone()).schema()).clone())
            .collect::<Vec<_>>();

        let merged = Schema::try_merge(all_schemas)?;

        Ok(Self {
            schema: Arc::new(prepend_string_column_schema(
                &merged,
                DATASET_MANIFEST_ID_FIELD_NAME,
            )),
            query_engines,
            query_expression,
        })
    }
}

impl TryFrom<DataframeQueryTableProvider> for Arc<dyn TableProvider> {
    type Error = DataFusionError;

    fn try_from(value: DataframeQueryTableProvider) -> Result<Self, Self::Error> {
        let schema = Arc::clone(&value.schema);
        let partition_stream = Arc::new(value);
        let table = StreamingTable::try_new(schema, vec![partition_stream])?;

        Ok(Arc::new(table))
    }
}

impl PartitionStream for DataframeQueryTableProvider {
    fn schema(&self) -> &SchemaRef {
        &self.schema
    }

    fn execute(&self, _ctx: Arc<datafusion::execution::TaskContext>) -> SendableRecordBatchStream {
        let engines = self.query_engines.clone();
        let query_expression = self.query_expression.clone();

        let target_schema = self.schema.clone();
        let stream = futures_util::stream::iter(engines.into_iter().flat_map(
            move |(partition_id, query_engine)| {
                let inner_schema = target_schema.clone();
                query_engine
                    .query(query_expression.clone())
                    .into_batch_iter()
                    .map(move |batch| {
                        align_record_batch_to_schema(
                            &prepend_string_column(
                                &batch,
                                DATASET_MANIFEST_ID_FIELD_NAME,
                                partition_id.as_str(),
                            )?,
                            &inner_schema,
                        )
                    })
            },
        ));

        let adapter = RecordBatchStreamAdapter::new(Arc::clone(&self.schema), stream);

        Box::pin(adapter)
    }
}

impl std::fmt::Debug for DataframeQueryTableProvider {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("DataframeQueryTableProvider")
            .field("schema", &self.schema)
            .field("query_expression", &self.query_expression)
            .finish()
    }
}

fn prepend_string_column_schema(schema: &Schema, column_name: &str) -> Schema {
    let mut fields = vec![Field::new(column_name, DataType::Utf8, false)];
    fields.extend(schema.fields().iter().map(|f| (**f).clone()));
    Schema::new_with_metadata(fields, schema.metadata.clone())
}

fn prepend_string_column(
    batch: &RecordBatch,
    column_name: &str,
    value: &str,
) -> Result<RecordBatch, arrow::error::ArrowError> {
    let row_count = batch.num_rows();

    let new_array =
        Arc::new(StringArray::from(vec![value.to_owned(); row_count])) as Arc<dyn Array>;

    let mut fields = vec![Field::new(column_name, DataType::Utf8, false)];
    fields.extend(batch.schema().fields().iter().map(|f| (**f).clone()));
    let schema = Arc::new(Schema::new_with_metadata(
        fields,
        batch.schema().metadata.clone(),
    ));

    let mut columns = vec![new_array];
    columns.extend(batch.columns().iter().cloned());

    RecordBatch::try_new(schema, columns)
}

pub fn align_record_batch_to_schema(
    batch: &RecordBatch,
    target_schema: &Arc<Schema>,
) -> Result<RecordBatch, DataFusionError> {
    let num_rows = batch.num_rows();

    let mut aligned_columns = Vec::with_capacity(target_schema.fields().len());

    for field in target_schema.fields() {
        if let Some((idx, _)) = batch.schema().column_with_name(field.name()) {
            aligned_columns.push(batch.column(idx).clone());
        } else {
            // Fill with nulls of the right data type
            let array = new_null_array(field.data_type(), num_rows);
            aligned_columns.push(array);
        }
    }

    Ok(RecordBatch::try_new(
        target_schema.clone(),
        aligned_columns,
    )?)
}