re_view_spatial/spatial_topology.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
use once_cell::sync::OnceCell;
use ahash::HashMap;
use nohash_hasher::{IntMap, IntSet};
use re_chunk_store::{
ChunkStore, ChunkStoreDiffKind, ChunkStoreEvent, ChunkStoreSubscriber,
ChunkStoreSubscriberHandle,
};
use re_log_types::{EntityPath, EntityPathHash, StoreId};
use re_types::{
components::{PinholeProjection, ViewCoordinates},
Component as _,
};
bitflags::bitflags! {
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
pub struct SubSpaceConnectionFlags: u8 {
const Pinhole = 0b0000001;
}
}
bitflags::bitflags! {
/// Marks entities that are of special interest for heuristics.
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
pub struct HeuristicHints: u8 {
const ViewCoordinates3d = 0b0000001;
}
}
/// Spatial subspace within we typically expect a homogeneous dimensionality without any projections.
///
/// Subspaces are separated by projections.
///
/// A subspace may contain internal transforms, but any such transforms must be invertible such
/// that all data can be represented regardless of choice of origin.
///
/// Within the tree of all subspaces, every entity is contained in exactly one subspace.
/// The subtree at (and including) the `origin` minus the
/// subtrees of all child spaces are considered to be contained in a subspace.
#[derive(Debug)]
pub struct SubSpace {
/// The transform root of this subspace.
///
/// This is also used to uniquely identify the space.
pub origin: EntityPath,
/// All entities that were logged at any point in time and are part of this subspace.
///
/// Contains the origin entity as well, unless the origin is the `EntityPath::root()` and nothing was logged to it directly.
///
/// Note that we this is merely here to speed up queries.
/// Instead, we could check if an entity is equal to or a descendent of the
/// origin and not equal or descendent of any child space.
/// The problem with that is that it's common for a 3D space to have many 2D spaces as children,
/// which would make this an expensive query.
pub entities: IntSet<EntityPath>,
/// Origin paths of child spaces.
///
/// This implies that there is a projection at the origin of the child space.
/// How it is connected is implied by `connection_to_parent` in the child space.
///
/// Any path in `child_spaces` is *not* contained in `entities`.
/// This implies that the camera itself is not part of its 3D space even when it may still have a 3D transform.
pub child_spaces: IntSet<EntityPath>,
/// Origin of the parent space.
///
/// The root space has `EntityPathHash::NONE` as parent.
pub parent_space: EntityPathHash,
/// The connection to the parent space.
///
/// Note that since flags are derived from the presence of components at the origin,
/// the root space still tracks this information.
pub connection_to_parent: SubSpaceConnectionFlags,
/// Entities in this space that qualify for one or more heuristic hints.
pub heuristic_hints: IntMap<EntityPath, HeuristicHints>,
//
// TODO(andreas):
// We could (and should) add here additional transform hierarchy information within this space.
// This would be useful in order to speed up determining the transforms for a given frame.
}
impl SubSpace {
/// Whether 3D content in this subspace can be displayed.
#[inline]
pub fn supports_3d_content(&self) -> bool {
// Note that we currently do *not* walk up the tree of spaces to check for pinholes.
// Pro:
// * on a disconnect everything should be possible again, so why would that not be the case at every cut?
// * being overly restrictive means we won't display 3D content when we could.
// * for the same reason we also don't want to preclude 3D content when encountering 2D view coordinates, albeit this may still inform heuristics
// Con:
// * if at any point (without a disconnect) we encountered a pinhole prior, everything below should be considered 2D
!self
.connection_to_parent
.contains(SubSpaceConnectionFlags::Pinhole)
}
/// Whether 2D content in this subspace can be displayed.
#[inline]
#[allow(clippy::unused_self)]
pub fn supports_2d_content(&self) -> bool {
// There's currently no way to prevent a subspace from displaying 2D content.
true
}
}
#[derive(Default)]
pub struct SpatialTopologyStoreSubscriber {
topologies: HashMap<StoreId, SpatialTopology>,
}
impl SpatialTopologyStoreSubscriber {
/// Accesses the global store subscriber.
///
/// Lazily registers the subscriber if it hasn't been registered yet.
pub fn subscription_handle() -> ChunkStoreSubscriberHandle {
static SUBSCRIPTION: OnceCell<ChunkStoreSubscriberHandle> = OnceCell::new();
*SUBSCRIPTION.get_or_init(|| ChunkStore::register_subscriber(Box::<Self>::default()))
}
}
impl ChunkStoreSubscriber for SpatialTopologyStoreSubscriber {
#[inline]
fn name(&self) -> String {
"SpatialTopologyStoreSubscriber".to_owned()
}
#[inline]
fn as_any(&self) -> &dyn std::any::Any {
self
}
#[inline]
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
fn on_events(&mut self, events: &[ChunkStoreEvent]) {
re_tracing::profile_function!();
for event in events {
if event.diff.kind != ChunkStoreDiffKind::Addition {
// Topology is only additive, don't care about removals.
continue;
}
// Possible optimization:
// only update topologies if an entity is logged the first time or a new relevant component was added.
self.topologies
.entry(event.store_id.clone())
.or_default()
.on_store_diff(
event.diff.chunk.entity_path(),
event.diff.chunk.component_names(),
);
}
}
}
/// Spatial topological information about a store.
///
/// Describes how 2D & 3D spaces are connected/disconnected.
///
/// Used to determine whether 2D/3D visualizers are visualizable and to inform
/// view generation heuristics.
///
/// Spatial topology is time independent but may change as new data comes in.
/// Generally, the assumption is that topological cuts stay constant over time.
pub struct SpatialTopology {
/// All subspaces, identified by their origin-hash.
subspaces: IntMap<EntityPathHash, SubSpace>,
/// Maps each logged entity to the origin of a subspace.
///
/// This is purely an optimization to speed up searching for `subspaces`.
subspace_origin_per_logged_entity: IntMap<EntityPathHash, EntityPathHash>,
}
impl Default for SpatialTopology {
fn default() -> Self {
Self {
subspaces: std::iter::once((
EntityPath::root().hash(),
SubSpace {
origin: EntityPath::root(),
entities: IntSet::default(), // Note that this doesn't contain the root entity.
child_spaces: IntSet::default(),
parent_space: EntityPathHash::NONE,
connection_to_parent: SubSpaceConnectionFlags::empty(),
heuristic_hints: IntMap::default(),
},
))
.collect(),
subspace_origin_per_logged_entity: Default::default(),
}
}
}
impl SpatialTopology {
/// Accesses the spatial topology for a given store.
pub fn access<T>(store_id: &StoreId, f: impl FnOnce(&Self) -> T) -> Option<T> {
ChunkStore::with_subscriber_once(
SpatialTopologyStoreSubscriber::subscription_handle(),
move |topology_subscriber: &SpatialTopologyStoreSubscriber| {
topology_subscriber.topologies.get(store_id).map(f)
},
)
.flatten()
}
/// Returns the subspace an entity belongs to.
#[inline]
pub fn subspace_for_entity(&self, entity: &EntityPath) -> &SubSpace {
self.subspaces
.get(&self.subspace_origin_hash_for_entity(entity))
.expect("unknown subspace origin, `SpatialTopology` is in an invalid state")
}
/// Iterates over all subspaces.
#[inline]
pub fn iter_subspaces(&self) -> impl Iterator<Item = &SubSpace> {
self.subspaces.values()
}
fn subspace_origin_hash_for_entity(&self, entity: &EntityPath) -> EntityPathHash {
let mut entity_reference = entity;
let mut entity_storage: EntityPath; // Only needed if we actually have to walk up the tree. Unused on the happy path.
loop {
// It's enough to check in`self.subspace_origin_per_logged_entity`, we don't have to check `self.subspaces`
// since every origin of a subspace is also a logged entity (except the root which we checked initially),
// making the keys of `self.subspace_origin_per_logged_entity` a superset of the keys of `self.subspaces`.
if let Some(origin_hash) = self
.subspace_origin_per_logged_entity
.get(&entity_reference.hash())
{
return *origin_hash;
}
if let Some(parent) = entity_reference.parent() {
entity_storage = parent;
entity_reference = &entity_storage;
} else {
return EntityPath::root().hash();
};
}
}
/// Returns the subspace for a given origin.
///
/// None if the origin doesn't identify its own subspace.
#[inline]
pub fn subspace_for_subspace_origin(&self, origin: EntityPathHash) -> Option<&SubSpace> {
self.subspaces.get(&origin)
}
fn on_store_diff(
&mut self,
entity_path: &EntityPath,
added_components: impl Iterator<Item = re_types::ComponentName>,
) {
re_tracing::profile_function!();
let mut new_subspace_connections = SubSpaceConnectionFlags::empty();
let mut new_heuristic_hints = HeuristicHints::empty();
for added_component in added_components {
if added_component == PinholeProjection::name() {
new_subspace_connections.insert(SubSpaceConnectionFlags::Pinhole);
} else if added_component == ViewCoordinates::name() {
new_heuristic_hints.insert(HeuristicHints::ViewCoordinates3d);
};
}
// Do we already know about this entity in general?
if let Some(subspace_origin_hash) = self
.subspace_origin_per_logged_entity
.get(&entity_path.hash())
{
// In that case, this causes only changes if there's a change in connection.
if !new_subspace_connections.is_empty() {
self.update_space_with_new_connections(
entity_path,
*subspace_origin_hash,
new_subspace_connections,
);
}
} else {
self.add_new_entity(entity_path, new_subspace_connections);
};
if !new_heuristic_hints.is_empty() {
let subspace = self
.subspaces
.get_mut(&self.subspace_origin_hash_for_entity(entity_path))
.expect("unknown subspace origin, `SpatialTopology` is in an invalid state");
subspace
.heuristic_hints
.entry(entity_path.clone())
.or_insert(HeuristicHints::empty())
.insert(new_heuristic_hints);
}
}
fn update_space_with_new_connections(
&mut self,
entity_path: &EntityPath,
subspace_origin_hash: EntityPathHash,
new_connections: SubSpaceConnectionFlags,
) {
if subspace_origin_hash == entity_path.hash() {
// If this is the origin of a space we can't split it.
// Instead we have to update connectivity & dimensionality.
let subspace = self
.subspaces
.get_mut(&subspace_origin_hash)
.expect("Subspace origin not part of origin->subspace map.");
subspace.connection_to_parent.insert(new_connections);
} else {
// Split the existing subspace.
self.split_subspace(subspace_origin_hash, entity_path, new_connections);
}
}
/// Adds a new entity to the spatial topology that wasn't known before.
fn add_new_entity(
&mut self,
entity_path: &EntityPath,
subspace_connections: SubSpaceConnectionFlags,
) {
let subspace_origin_hash = self.subspace_origin_hash_for_entity(entity_path);
let target_space_origin_hash =
if subspace_connections.is_empty() || entity_path.hash() == subspace_origin_hash {
// Add entity to the existing space.
let subspace = self
.subspaces
.get_mut(&subspace_origin_hash)
.expect("Subspace origin not part of origin->subspace map.");
subspace.entities.insert(entity_path.clone());
subspace.connection_to_parent.insert(subspace_connections);
subspace.origin.hash()
} else {
// Create a new subspace with this entity as its origin & containing this entity.
self.split_subspace(subspace_origin_hash, entity_path, subspace_connections);
entity_path.hash()
};
self.subspace_origin_per_logged_entity
.insert(entity_path.hash(), target_space_origin_hash);
}
fn split_subspace(
&mut self,
split_subspace_origin_hash: EntityPathHash,
new_space_origin: &EntityPath,
connection_to_parent: SubSpaceConnectionFlags,
) {
let split_subspace = self
.subspaces
.get_mut(&split_subspace_origin_hash)
.expect("Subspace origin not part of origin->subspace map.");
debug_assert!(new_space_origin.is_descendant_of(&split_subspace.origin));
let mut new_space = SubSpace {
origin: new_space_origin.clone(),
entities: std::iter::once(new_space_origin.clone()).collect(),
child_spaces: Default::default(),
parent_space: split_subspace_origin_hash,
connection_to_parent,
heuristic_hints: Default::default(),
};
// Transfer entities from self to the new space if they're children of the new space.
split_subspace.entities.retain(|e| {
if e.starts_with(new_space_origin) {
self.subspace_origin_per_logged_entity
.insert(e.hash(), new_space.origin.hash());
new_space.entities.insert(e.clone());
false
} else {
true
}
});
// Transfer any child spaces from self to the new space if they're children of the new space.
split_subspace.child_spaces.retain(|child_origin| {
debug_assert!(child_origin != new_space_origin);
if child_origin.is_descendant_of(new_space_origin) {
new_space.child_spaces.insert(child_origin.clone());
false
} else {
true
}
});
split_subspace.child_spaces.insert(new_space_origin.clone());
// Patch parents of the child spaces that were moved to the new space.
for child_origin in &new_space.child_spaces {
let child_space = self
.subspaces
.get_mut(&child_origin.hash())
.expect("Child origin not part of origin->subspace map.");
child_space.parent_space = new_space.origin.hash();
}
self.subspaces.insert(new_space.origin.hash(), new_space);
}
}
#[cfg(test)]
mod tests {
use re_log_types::EntityPath;
use re_types::{
components::{PinholeProjection, ViewCoordinates},
Component as _, ComponentName,
};
use crate::spatial_topology::{HeuristicHints, SubSpaceConnectionFlags};
use super::SpatialTopology;
#[test]
fn no_splits() {
let mut topo = SpatialTopology::default();
// Initialized with root space.
assert_eq!(topo.subspaces.len(), 1);
assert_eq!(topo.subspace_origin_per_logged_entity.len(), 0);
// Add a simple tree without any splits for now.
add_diff(&mut topo, "robo", &[]);
add_diff(&mut topo, "robo/arm", &[]);
add_diff(&mut topo, "robo/eyes/cam", &[]);
// Check that all entities are in the same space.
check_paths_in_space(&topo, &["robo", "robo/arm", "robo/eyes/cam"], "/");
// .. and that space has no children and no parent.
let subspace = topo.subspace_for_entity(&"robo".into());
assert!(subspace.child_spaces.is_empty());
assert!(subspace.parent_space.is_none());
// If we make up entities that weren't logged we get the closest space
assert_eq!(
topo.subspace_for_entity(&EntityPath::root()).origin,
EntityPath::root()
);
assert_eq!(
topo.subspace_for_entity(&"robo/eyes".into()).origin,
EntityPath::root()
);
assert_eq!(
topo.subspace_for_entity(&"robo/leg".into()).origin,
EntityPath::root()
);
// Add splitting entities to the root space - this should not cause any splits.
#[allow(clippy::single_element_loop)]
for (name, flags) in [
(PinholeProjection::name(), SubSpaceConnectionFlags::Pinhole),
// Add future ways of splitting here (in the past `DisconnectedSpace` was used here).
] {
add_diff(&mut topo, "", &[name]);
let subspace = topo.subspace_for_entity(&"robo".into());
assert_eq!(subspace.connection_to_parent, flags);
assert!(subspace.child_spaces.is_empty());
assert!(subspace.parent_space.is_none());
}
}
#[test]
fn valid_splits() {
let mut topo = SpatialTopology::default();
// Two cameras, one delayed for later.
add_diff(&mut topo, "robo", &[]);
add_diff(&mut topo, "robo/eyes/left/cam/annotation", &[]);
add_diff(&mut topo, "robo/arm", &[]);
add_diff(
&mut topo,
"robo/eyes/left/cam",
&[PinholeProjection::name()],
);
add_diff(&mut topo, "robo/eyes/right/cam/annotation", &[]);
add_diff(&mut topo, "robo/eyes/right/cam", &[]);
{
check_paths_in_space(
&topo,
&[
"robo",
"robo/arm",
"robo/eyes/right/cam",
"robo/eyes/right/cam/annotation",
],
"/",
);
check_paths_in_space(
&topo,
&["robo/eyes/left/cam", "robo/eyes/left/cam/annotation"],
"robo/eyes/left/cam",
);
let root = topo.subspace_for_entity(&"robo".into());
let left_camera = topo.subspace_for_entity(&"robo/eyes/left/cam".into());
assert_eq!(left_camera.origin, "robo/eyes/left/cam".into());
assert_eq!(left_camera.parent_space, root.origin.hash());
assert_eq!(
left_camera.connection_to_parent,
SubSpaceConnectionFlags::Pinhole
);
assert_eq!(root.connection_to_parent, SubSpaceConnectionFlags::empty());
assert!(root.parent_space.is_none());
}
// Introduce a third space at the right camera.
add_diff(
&mut topo,
"robo/eyes/right/cam",
&[PinholeProjection::name()],
);
{
check_paths_in_space(&topo, &["robo", "robo/arm"], "/");
check_paths_in_space(
&topo,
&["robo/eyes/right/cam", "robo/eyes/right/cam/annotation"],
"robo/eyes/right/cam",
);
let root = topo.subspace_for_entity(&"robo".into());
let left_camera = topo.subspace_for_entity(&"robo/eyes/left/cam".into());
let right_camera = topo.subspace_for_entity(&"robo/eyes/right/cam".into());
assert_eq!(right_camera.origin, "robo/eyes/right/cam".into());
assert_eq!(right_camera.parent_space, root.origin.hash());
assert_eq!(
right_camera.connection_to_parent,
SubSpaceConnectionFlags::Pinhole
);
assert_eq!(left_camera.origin, "robo/eyes/left/cam".into());
assert_eq!(left_camera.parent_space, root.origin.hash());
assert_eq!(
left_camera.connection_to_parent,
SubSpaceConnectionFlags::Pinhole
);
assert_eq!(root.connection_to_parent, SubSpaceConnectionFlags::empty());
assert!(root.parent_space.is_none());
// If we make up entities that weren't logged we get the closest space
assert_eq!(
topo.subspace_for_entity(&"robo/eyes/right/cam/unheard".into())
.origin,
"robo/eyes/right/cam".into()
);
assert_eq!(
topo.subspace_for_entity(&"bonkers".into()).origin,
EntityPath::root()
);
}
// Add view coordinates to robo.
add_diff(&mut topo, "robo", &[ViewCoordinates::name()]);
{
let root = topo.subspace_for_entity(&EntityPath::root());
assert!(root.parent_space.is_none());
assert_eq!(root.connection_to_parent, SubSpaceConnectionFlags::empty());
assert_eq!(
root.heuristic_hints,
std::iter::once((EntityPath::from("robo"), HeuristicHints::ViewCoordinates3d))
.collect()
);
}
}
#[test]
fn handle_invalid_splits_gracefully() {
for nested_first in [false, true] {
let mut topo = SpatialTopology::default();
// Two nested cameras. Try both orderings
if nested_first {
add_diff(&mut topo, "cam0/cam1", &[PinholeProjection::name()]);
add_diff(&mut topo, "cam0", &[PinholeProjection::name()]);
} else {
add_diff(&mut topo, "cam0", &[PinholeProjection::name()]);
add_diff(&mut topo, "cam0/cam1", &[PinholeProjection::name()]);
}
check_paths_in_space(&topo, &["cam0"], "cam0");
check_paths_in_space(&topo, &["cam0/cam1"], "cam0/cam1");
let root = topo.subspace_for_entity(&EntityPath::root());
let cam0 = topo.subspace_for_entity(&"cam0".into());
let cam1 = topo.subspace_for_entity(&"cam0/cam1".into());
assert_eq!(root.connection_to_parent, SubSpaceConnectionFlags::empty());
assert_eq!(cam0.connection_to_parent, SubSpaceConnectionFlags::Pinhole);
assert_eq!(cam1.connection_to_parent, SubSpaceConnectionFlags::Pinhole);
assert_eq!(cam0.parent_space, EntityPath::root().hash());
assert_eq!(cam1.parent_space, cam0.origin.hash());
assert!(cam1.child_spaces.is_empty());
}
}
fn add_diff(topo: &mut SpatialTopology, path: &str, components: &[ComponentName]) {
topo.on_store_diff(&path.into(), components.iter().copied());
}
fn check_paths_in_space(topo: &SpatialTopology, paths: &[&str], expected_origin: &str) {
for path in paths {
let path = *path;
assert_eq!(
topo.subspace_for_entity(&path.into()).origin,
expected_origin.into()
);
}
let space = topo.subspace_for_entity(&paths[0].into());
for path in paths {
let path = *path;
assert!(space.entities.contains(&path.into()));
}
assert_eq!(space.entities.len(), paths.len());
}
}