re_view_time_series/
line_visualizer_system.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
use itertools::Itertools as _;

use re_chunk_store::{RangeQuery, RowId};
use re_log_types::{EntityPath, TimeInt};
use re_types::archetypes;
use re_types::components::{AggregationPolicy, ClearIsRecursive, SeriesVisible};
use re_types::{
    components::{Color, Name, Scalar, StrokeWidth},
    Archetype as _, Component as _,
};
use re_view::range_with_blueprint_resolved_data;
use re_viewer_context::external::re_entity_db::InstancePath;
use re_viewer_context::{
    auto_color_for_entity_path, IdentifiedViewSystem, QueryContext, TypedComponentFallbackProvider,
    ViewContext, ViewQuery, ViewStateExt as _, ViewSystemExecutionError, VisualizerQueryInfo,
    VisualizerSystem,
};

use crate::series_query::{
    allocate_plot_points, collect_colors, collect_radius_ui, collect_scalars, collect_series_name,
    collect_series_visibility, determine_num_series,
};
use crate::util::{determine_time_per_pixel, determine_time_range, points_to_series};
use crate::view_class::TimeSeriesViewState;
use crate::{PlotPoint, PlotPointAttrs, PlotSeries, PlotSeriesKind};

/// The system for rendering [`archetypes::SeriesLines`] archetypes.
#[derive(Default, Debug)]
pub struct SeriesLineSystem {
    pub all_series: Vec<PlotSeries>,
}

impl IdentifiedViewSystem for SeriesLineSystem {
    fn identifier() -> re_viewer_context::ViewSystemIdentifier {
        "SeriesLines".into()
    }
}

const DEFAULT_STROKE_WIDTH: f32 = 0.75;

impl VisualizerSystem for SeriesLineSystem {
    fn visualizer_query_info(&self) -> VisualizerQueryInfo {
        let mut query_info = VisualizerQueryInfo::from_archetype::<archetypes::Scalars>();
        query_info.queried.extend(
            archetypes::SeriesLines::all_components()
                .iter()
                .map(|descr| descr.component_name),
        );

        query_info.indicators =
            [archetypes::SeriesLines::descriptor_indicator().component_name].into();

        query_info
    }

    fn execute(
        &mut self,
        ctx: &ViewContext<'_>,
        query: &ViewQuery<'_>,
        _context: &re_viewer_context::ViewContextCollection,
    ) -> Result<Vec<re_renderer::QueueableDrawData>, ViewSystemExecutionError> {
        re_tracing::profile_function!();

        self.load_scalars(ctx, query);
        Ok(Vec::new())
    }

    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn fallback_provider(&self) -> &dyn re_viewer_context::ComponentFallbackProvider {
        self
    }
}

impl TypedComponentFallbackProvider<Color> for SeriesLineSystem {
    fn fallback_for(&self, ctx: &QueryContext<'_>) -> Color {
        auto_color_for_entity_path(ctx.target_entity_path)
    }
}

impl TypedComponentFallbackProvider<StrokeWidth> for SeriesLineSystem {
    fn fallback_for(&self, _ctx: &QueryContext<'_>) -> StrokeWidth {
        StrokeWidth(DEFAULT_STROKE_WIDTH.into())
    }
}

impl TypedComponentFallbackProvider<Name> for SeriesLineSystem {
    fn fallback_for(&self, ctx: &QueryContext<'_>) -> Name {
        let state = ctx.view_state.downcast_ref::<TimeSeriesViewState>();

        state
            .ok()
            .and_then(|state| {
                state
                    .default_names_for_entities
                    .get(ctx.target_entity_path)
                    .map(|name| name.clone().into())
            })
            .or_else(|| {
                ctx.target_entity_path
                    .last()
                    .map(|part| part.ui_string().into())
            })
            .unwrap_or_default()
    }
}

impl TypedComponentFallbackProvider<SeriesVisible> for SeriesLineSystem {
    fn fallback_for(&self, _ctx: &QueryContext<'_>) -> SeriesVisible {
        true.into()
    }
}

re_viewer_context::impl_component_fallback_provider!(SeriesLineSystem => [Color, StrokeWidth, Name, SeriesVisible]);

impl SeriesLineSystem {
    fn load_scalars(&mut self, ctx: &ViewContext<'_>, query: &ViewQuery<'_>) {
        re_tracing::profile_function!();

        let plot_mem =
            egui_plot::PlotMemory::load(ctx.viewer_ctx.egui_ctx(), crate::plot_id(query.view_id));
        let time_per_pixel = determine_time_per_pixel(ctx.viewer_ctx, plot_mem.as_ref());

        let data_results = query.iter_visible_data_results(Self::identifier());

        let parallel_loading = true;
        if parallel_loading {
            use rayon::prelude::*;
            re_tracing::profile_wait!("load_series");
            for mut one_series in data_results
                .collect_vec()
                .par_iter()
                .map(|data_result| -> Vec<PlotSeries> {
                    let mut series = vec![];
                    self.load_series(
                        ctx,
                        query,
                        plot_mem.as_ref(),
                        time_per_pixel,
                        data_result,
                        &mut series,
                    );
                    series
                })
                .collect::<Vec<_>>()
            {
                self.all_series.append(&mut one_series);
            }
        } else {
            let mut series = vec![];
            for data_result in data_results {
                self.load_series(
                    ctx,
                    query,
                    plot_mem.as_ref(),
                    time_per_pixel,
                    data_result,
                    &mut series,
                );
            }
            self.all_series = series;
        }
    }

    #[allow(clippy::too_many_arguments)]
    fn load_series(
        &self,
        ctx: &ViewContext<'_>,
        view_query: &ViewQuery<'_>,
        plot_mem: Option<&egui_plot::PlotMemory>,
        time_per_pixel: f64,
        data_result: &re_viewer_context::DataResult,
        all_series: &mut Vec<PlotSeries>,
    ) {
        re_tracing::profile_function!();

        let current_query = ctx.current_query();
        let query_ctx = ctx.query_context(data_result, &current_query);

        let time_offset = ctx
            .view_state
            .downcast_ref::<TimeSeriesViewState>()
            .map_or(0, |state| state.time_offset);
        let time_range =
            determine_time_range(view_query.latest_at, time_offset, data_result, plot_mem);
        {
            use re_view::RangeResultsExt as _;

            re_tracing::profile_scope!("primary", &data_result.entity_path.to_string());

            let entity_path = &data_result.entity_path;
            let query = re_chunk_store::RangeQuery::new(view_query.timeline, time_range)
                // We must fetch data with extended bounds, otherwise the query clamping would
                // cut-off the data early at the edge of the view.
                .include_extended_bounds(true);

            let results = range_with_blueprint_resolved_data(
                ctx,
                None,
                &query,
                data_result,
                [
                    Scalar::name(),
                    Color::name(),
                    StrokeWidth::name(),
                    Name::name(),
                    AggregationPolicy::name(),
                    SeriesVisible::name(),
                ],
            );

            // If we have no scalars, we can't do anything.
            let Some(all_scalar_chunks) = results.get_required_chunks(&Scalar::name()) else {
                return;
            };

            // All the default values for a `PlotPoint`, accounting for both overrides and default values.
            // TODO(andreas): Fallback should produce several colors. Instead, we generate additional ones on the fly if necessary right now.
            let fallback_color: Color = self.fallback_for(&query_ctx);
            let fallback_stroke_width: StrokeWidth = self.fallback_for(&query_ctx);
            let default_point = PlotPoint {
                time: 0,
                value: 0.0,
                attrs: PlotPointAttrs {
                    color: fallback_color.into(),
                    radius_ui: 0.5 * *fallback_stroke_width.0,
                    kind: PlotSeriesKind::Continuous,
                },
            };

            let num_series = determine_num_series(&all_scalar_chunks);
            let mut points_per_series =
                allocate_plot_points(&query, &default_point, &all_scalar_chunks, num_series);

            collect_scalars(&all_scalar_chunks, &mut points_per_series);
            collect_colors(
                entity_path,
                &query,
                &results,
                &all_scalar_chunks,
                &mut points_per_series,
            );
            collect_radius_ui(
                &query,
                &results,
                &all_scalar_chunks,
                &mut points_per_series,
                StrokeWidth::name(),
                0.5,
            );

            // Now convert the `PlotPoints` into `Vec<PlotSeries>`
            let aggregator = results
                .get_optional_chunks(&AggregationPolicy::name())
                .iter()
                .find(|chunk| !chunk.is_empty())
                .and_then(|chunk| chunk.component_mono::<AggregationPolicy>(0)?.ok())
                // TODO(andreas): Relying on the default==placeholder here instead of going through a fallback provider.
                //                This is fine, because we know there's no `TypedFallbackProvider`, but wrong if one were to be added.
                .unwrap_or_default();

            // NOTE: The chunks themselves are already sorted as best as possible (hint: overlap)
            // by the query engine.
            let all_chunks_sorted_and_not_overlapped =
                all_scalar_chunks.iter().tuple_windows().all(|(lhs, rhs)| {
                    let lhs_time_max = lhs
                        .timelines()
                        .get(query.timeline())
                        .map_or(TimeInt::MAX, |time_column| time_column.time_range().max());
                    let rhs_time_min = rhs
                        .timelines()
                        .get(query.timeline())
                        .map_or(TimeInt::MIN, |time_column| time_column.time_range().min());
                    lhs_time_max <= rhs_time_min
                });

            let has_discontinuities = {
                // Find all clears that may apply, in order to render discontinuities properly.

                re_tracing::profile_scope!("discontinuities");

                let cleared_indices = collect_recursive_clears(ctx, &query, entity_path);
                let has_discontinuities = !cleared_indices.is_empty();

                for points in &mut points_per_series {
                    points.extend(cleared_indices.iter().map(|(data_time, _)| PlotPoint {
                        time: data_time.as_i64(),
                        value: 0.0,
                        attrs: PlotPointAttrs {
                            color: egui::Color32::TRANSPARENT,
                            radius_ui: 0.0,
                            kind: PlotSeriesKind::Clear,
                        },
                    }));
                }

                has_discontinuities
            };

            // This is _almost_ sorted already: all the individual chunks are sorted, but we still
            // have to deal with overlapped chunks, or discontinuities introduced by query-time clears.
            if !all_chunks_sorted_and_not_overlapped || has_discontinuities {
                re_tracing::profile_scope!("sort");
                for points in &mut points_per_series {
                    points.sort_by_key(|p| p.time);
                }
            }

            let series_visibility = collect_series_visibility(&query, &results, num_series);
            let series_names = collect_series_name(self, &query_ctx, &results, num_series);

            debug_assert_eq!(points_per_series.len(), series_names.len());
            for (instance, (points, label, visible)) in itertools::izip!(
                points_per_series.into_iter(),
                series_names.into_iter(),
                series_visibility.into_iter()
            )
            .enumerate()
            {
                let instance_path = if num_series == 1 {
                    InstancePath::entity_all(data_result.entity_path.clone())
                } else {
                    InstancePath::instance(
                        data_result.entity_path.clone(),
                        (instance as u64).into(),
                    )
                };

                points_to_series(
                    instance_path,
                    time_per_pixel,
                    visible,
                    points,
                    ctx.recording_engine().store(),
                    view_query,
                    label,
                    aggregator,
                    all_series,
                );
            }
        }
    }
}

fn collect_recursive_clears(
    ctx: &ViewContext<'_>,
    query: &RangeQuery,
    entity_path: &EntityPath,
) -> Vec<(TimeInt, RowId)> {
    re_tracing::profile_function!();

    let mut cleared_indices = Vec::new();

    let mut clear_entity_path = entity_path.clone();
    loop {
        let results = ctx.recording_engine().cache().range(
            query,
            &clear_entity_path,
            [ClearIsRecursive::name()],
        );

        let empty = Vec::new();
        let chunks = results
            .components
            .get(&ClearIsRecursive::name())
            .unwrap_or(&empty);

        for chunk in chunks {
            cleared_indices.extend(
                itertools::izip!(
                    chunk.iter_component_indices(query.timeline(), &ClearIsRecursive::name()),
                    chunk
                        .iter_component::<ClearIsRecursive>()
                        .map(|is_recursive| {
                            is_recursive.as_slice().first().is_some_and(|v| *v.0)
                        })
                )
                .filter_map(|(index, is_recursive)| {
                    let is_recursive = is_recursive || clear_entity_path == *entity_path;
                    is_recursive.then_some(index)
                }),
            );
        }

        let Some(parent_entity_path) = clear_entity_path.parent() else {
            break;
        };

        clear_entity_path = parent_entity_path;
    }

    cleared_indices
}