rerun_bindings/catalog/dataframe_query.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
use std::collections::{BTreeMap, BTreeSet};
use std::sync::Arc;
use arrow::datatypes::Schema;
use datafusion::catalog::TableProvider;
use datafusion_ffi::table_provider::FFI_TableProvider;
use pyo3::exceptions::{PyTypeError, PyValueError};
use pyo3::prelude::PyAnyMethods as _;
use pyo3::types::{PyCapsule, PyDict, PyTuple};
use pyo3::{pyclass, pymethods, Bound, Py, PyAny, PyRef, PyResult, Python};
use re_chunk::ComponentName;
use re_chunk_store::{ChunkStoreHandle, QueryExpression, SparseFillStrategy, ViewContentsSelector};
use re_dataframe::{QueryCache, QueryEngine};
use re_datafusion::DataframeQueryTableProvider;
use re_log_types::{EntityPath, EntityPathFilter, ResolvedTimeRange};
use re_sdk::ComponentDescriptor;
use re_sorbet::ColumnDescriptor;
use crate::catalog::{to_py_err, PyDataset};
use crate::dataframe::ComponentLike;
use crate::utils::get_tokio_runtime;
/// View into a remote dataset acting as DataFusion table provider.
#[pyclass(name = "DataframeQueryView")]
pub struct PyDataframeQueryView {
dataset: Py<PyDataset>,
query_expression: QueryExpression,
/// Limit the query to these partition ids.
///
/// If empty, use the whole dataset.
partition_ids: Vec<String>,
}
impl PyDataframeQueryView {
#[expect(clippy::fn_params_excessive_bools)]
pub fn new(
dataset: Py<PyDataset>,
index: String,
contents: Py<PyAny>,
include_semantically_empty_columns: bool,
include_indicator_columns: bool,
include_tombstone_columns: bool,
py: Python<'_>,
) -> PyResult<Self> {
// We get the schema from the store since we need it to resolve our columns
// TODO(jleibs): This is way too slow -- maybe we cache it somewhere?
let schema = {
let dataset_py = dataset.borrow(py);
let entry = dataset_py.as_super();
let dataset_id = entry.details.id;
let mut connection = entry.client.borrow(py).connection().clone();
connection.get_dataset_schema(py, dataset_id)?
};
// TODO(jleibs): Check schema for the index name
let view_contents = extract_contents_expr(contents.bind(py), &schema)?;
Ok(Self {
dataset,
query_expression: QueryExpression {
view_contents: Some(view_contents),
include_semantically_empty_columns,
include_indicator_columns,
include_tombstone_columns,
filtered_index: Some(index.into()),
filtered_index_range: None,
filtered_index_values: None,
using_index_values: None,
filtered_is_not_null: None,
sparse_fill_strategy: SparseFillStrategy::None,
selection: None,
},
partition_ids: vec![],
})
}
fn clone_with_new_query(
&self,
py: Python<'_>,
mutation_fn: impl FnOnce(&mut QueryExpression),
) -> Self {
let mut copy = Self {
dataset: self.dataset.clone_ref(py),
query_expression: self.query_expression.clone(),
partition_ids: self.partition_ids.clone(),
};
mutation_fn(&mut copy.query_expression);
copy
}
}
#[pymethods]
impl PyDataframeQueryView {
/// Filter by one or more partition ids. All partition ids are included if not specified.
#[pyo3(signature = (partition_id, *args))]
fn filter_partition_id<'py>(
&self,
py: Python<'py>,
partition_id: String,
args: &Bound<'py, PyTuple>,
) -> PyResult<Self> {
let mut partition_ids = vec![partition_id];
for i in 0..args.len()? {
let item = args.get_item(i)?;
partition_ids.push(item.extract()?);
}
Ok(Self {
dataset: self.dataset.clone_ref(py),
query_expression: self.query_expression.clone(),
partition_ids,
})
}
#[allow(rustdoc::private_doc_tests)]
/// Filter the view to only include data between the given index sequence numbers.
///
/// This range is inclusive and will contain both the value at the start and the value at the end.
///
/// The view must be of a sequential index type to use this method.
///
/// Parameters
/// ----------
/// start : int
/// The inclusive start of the range.
/// end : int
/// The inclusive end of the range.
///
/// Returns
/// -------
/// RecordingView
/// A new view containing only the data within the specified range.
///
/// The original view will not be modified.
fn filter_range_sequence(&self, py: Python<'_>, start: i64, end: i64) -> PyResult<Self> {
match self.query_expression.filtered_index.as_ref() {
// TODO(#9084): do we need this check? If so, how can we accomplish it?
// Some(filtered_index) if filtered_index.typ() != TimeType::Sequence => {
// return Err(PyValueError::new_err(format!(
// "Index for {} is not a sequence.",
// filtered_index.name()
// )));
// }
Some(_) => {}
None => {
return Err(PyValueError::new_err(
"Specify an index to filter on first.".to_owned(),
));
}
}
let start = if let Ok(seq) = re_chunk::TimeInt::try_from(start) {
seq
} else {
re_log::error!(
illegal_value = start,
new_value = re_chunk::TimeInt::MIN.as_i64(),
"set_time_sequence() called with illegal value - clamped to minimum legal value"
);
re_chunk::TimeInt::MIN
};
let end = if let Ok(seq) = re_chunk::TimeInt::try_from(end) {
seq
} else {
re_log::error!(
illegal_value = end,
new_value = re_chunk::TimeInt::MAX.as_i64(),
"set_time_sequence() called with illegal value - clamped to maximum legal value"
);
re_chunk::TimeInt::MAX
};
let resolved = ResolvedTimeRange::new(start, end);
Ok(self.clone_with_new_query(py, |query_expression| {
query_expression.filtered_index_range = Some(resolved);
}))
}
#[allow(rustdoc::private_doc_tests)]
/// Filter the view to only include data between the given index values expressed as seconds.
///
/// This range is inclusive and will contain both the value at the start and the value at the end.
///
/// The view must be of a temporal index type to use this method.
///
/// Parameters
/// ----------
/// start : int
/// The inclusive start of the range.
/// end : int
/// The inclusive end of the range.
///
/// Returns
/// -------
/// RecordingView
/// A new view containing only the data within the specified range.
///
/// The original view will not be modified.
fn filter_range_secs(&self, py: Python<'_>, start: f64, end: f64) -> PyResult<Self> {
match self.query_expression.filtered_index.as_ref() {
// TODO(#9084): do we need this check? If so, how can we accomplish it?
// Some(filtered_index) if filtered_index.typ() != TimeType::Time => {
// return Err(PyValueError::new_err(format!(
// "Index for {} is not temporal.",
// filtered_index.name()
// )));
// }
Some(_) => {}
None => {
return Err(PyValueError::new_err(
"Specify an index to filter on first.".to_owned(),
));
}
}
let start = re_log_types::Timestamp::from_secs_since_epoch(start);
let end = re_log_types::Timestamp::from_secs_since_epoch(end);
let resolved = ResolvedTimeRange::new(start, end);
Ok(self.clone_with_new_query(py, |query_expression| {
query_expression.filtered_index_range = Some(resolved);
}))
}
#[allow(rustdoc::private_doc_tests)]
/// Filter the view to only include data between the given index values expressed as nanoseconds.
///
/// This range is inclusive and will contain both the value at the start and the value at the end.
///
/// The view must be of a temporal index type to use this method.
///
/// Parameters
/// ----------
/// start : int
/// The inclusive start of the range.
/// end : int
/// The inclusive end of the range.
///
/// Returns
/// -------
/// RecordingView
/// A new view containing only the data within the specified range.
///
/// The original view will not be modified.
fn filter_range_nanos(&self, py: Python<'_>, start: i64, end: i64) -> PyResult<Self> {
match self.query_expression.filtered_index.as_ref() {
// TODO(#9084): do we need this?
// Some(filtered_index) if filtered_index.typ() != TimeType::Time => {
// return Err(PyValueError::new_err(format!(
// "Index for {} is not temporal.",
// filtered_index.name()
// )));
// }
Some(_) => {}
None => {
return Err(PyValueError::new_err(
"Specify an index to filter on first.".to_owned(),
));
}
}
let start = re_log_types::Timestamp::from_nanos_since_epoch(start);
let end = re_log_types::Timestamp::from_nanos_since_epoch(end);
let resolved = ResolvedTimeRange::new(start, end);
Ok(self.clone_with_new_query(py, |query_expression| {
query_expression.filtered_index_range = Some(resolved);
}))
}
#[allow(rustdoc::private_doc_tests)]
/// Filter the view to only include data at the provided index values.
///
/// The index values returned will be the intersection between the provided values and the
/// original index values.
///
/// This requires index values to be a precise match. Index values in Rerun are
/// represented as i64 sequence counts or nanoseconds. This API does not expose an interface
/// in floating point seconds, as the numerical conversion would risk false mismatches.
///
/// Parameters
/// ----------
/// values : IndexValuesLike
/// The index values to filter by.
///
/// Returns
/// -------
/// RecordingView
/// A new view containing only the data at the specified index values.
///
/// The original view will not be modified.
fn filter_index_values(
&self,
py: Python<'_>,
values: crate::dataframe::IndexValuesLike<'_>,
) -> PyResult<Self> {
let values = values.to_index_values()?;
Ok(self.clone_with_new_query(py, |query_expression| {
query_expression.filtered_index_values = Some(values);
}))
}
#[allow(rustdoc::private_doc_tests)]
/// Filter the view to only include rows where the given component column is not null.
///
/// This corresponds to rows for index values where this component was provided to Rerun explicitly
/// via `.log()` or `.send_columns()`.
///
/// Parameters
/// ----------
/// column : AnyComponentColumn
/// The component column to filter by.
///
/// Returns
/// -------
/// RecordingView
/// A new view containing only the data where the specified component column is not null.
///
/// The original view will not be modified.
fn filter_is_not_null(
&self,
py: Python<'_>,
column: crate::dataframe::AnyComponentColumn,
) -> PyResult<Self> {
let column = column.into_selector()?;
Ok(self.clone_with_new_query(py, |query_expression| {
query_expression.filtered_is_not_null = Some(column);
}))
}
#[allow(rustdoc::private_doc_tests)]
/// Replace the index in the view with the provided values.
///
/// The output view will always have the same number of rows as the provided values, even if
/// those rows are empty. Use with [`.fill_latest_at()`][rerun.dataframe.RecordingView.fill_latest_at]
/// to populate these rows with the most recent data.
///
/// This requires index values to be a precise match. Index values in Rerun are
/// represented as i64 sequence counts or nanoseconds. This API does not expose an interface
/// in floating point seconds, as the numerical conversion would risk false mismatches.
///
/// Parameters
/// ----------
/// values : IndexValuesLike
/// The index values to use.
///
/// Returns
/// -------
/// RecordingView
/// A new view containing the provided index values.
///
/// The original view will not be modified.
fn using_index_values(
&self,
py: Python<'_>,
values: crate::dataframe::IndexValuesLike<'_>,
) -> PyResult<Self> {
let values = values.to_index_values()?;
Ok(self.clone_with_new_query(py, |query_expression| {
query_expression.using_index_values = Some(values);
}))
}
#[allow(rustdoc::private_doc_tests)]
/// Populate any null values in a row with the latest valid data according to the index.
///
/// Returns
/// -------
/// RecordingView
/// A new view with the null values filled in.
///
/// The original view will not be modified.
fn fill_latest_at(&self, py: Python<'_>) -> Self {
self.clone_with_new_query(py, |query_expression| {
query_expression.sparse_fill_strategy = SparseFillStrategy::LatestAtGlobal;
})
}
/// Returns a DataFusion table provider capsule.
fn __datafusion_table_provider__<'py>(
self_: PyRef<'py, Self>,
py: Python<'py>,
) -> PyResult<Bound<'py, PyCapsule>> {
let dataset = self_.dataset.borrow(py);
let entry = dataset.as_super();
let dataset_id = entry.details.id;
let mut connection = entry.client.borrow(py).connection().clone();
//
// Fetch relevant chunks
//
let chunk_stores = connection.get_chunks_for_dataframe_query(
py,
dataset_id,
&self_.query_expression.view_contents,
self_.query_expression.min_latest_at(),
self_.query_expression.max_range(),
self_.partition_ids.as_slice(),
)?;
let query_engines = chunk_stores
.into_iter()
.map(|(partition_id, chunk_store)| {
let store_handle = ChunkStoreHandle::new(chunk_store);
let query_engine = QueryEngine::new(
store_handle.clone(),
QueryCache::new_handle(store_handle.clone()),
);
(partition_id, query_engine)
})
.collect();
let provider: Arc<dyn TableProvider> =
DataframeQueryTableProvider::new(query_engines, self_.query_expression.clone())
.map_err(to_py_err)?
.try_into()
.map_err(to_py_err)?;
let capsule_name = cr"datafusion_table_provider".into();
let runtime = get_tokio_runtime().handle().clone();
let provider = FFI_TableProvider::new(provider, false, Some(runtime));
PyCapsule::new(py, provider, Some(capsule_name))
}
/// Register this view to the global DataFusion context and return a DataFrame.
fn df(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let py = self_.py();
let dataset = self_.dataset.borrow(py);
let super_ = dataset.as_super();
let client = super_.client.borrow(py);
let ctx = client.ctx(py)?;
let ctx = ctx.bind(py);
let uuid = uuid::Uuid::new_v4().simple();
let name = format!("{}_dataframe_query_{uuid}", super_.name());
drop(client);
drop(dataset);
// We're fine with this failing.
ctx.call_method1("deregister_table", (name.clone(),))?;
ctx.call_method1("register_table_provider", (name.clone(), self_))?;
let df = ctx.call_method1("table", (name,))?;
Ok(df)
}
}
/// Convert a `ViewContentsLike` into a `ViewContentsSelector`.
///
/// ```python
/// ViewContentsLike = Union[str, Dict[str, Union[ComponentLike, Sequence[ComponentLike]]]]
/// ```
///
/// We cant do this with the normal `FromPyObject` mechanisms because we want access to the
/// `QueryEngine` to resolve the entity paths.
fn extract_contents_expr(
expr: &Bound<'_, PyAny>,
schema: &Schema,
) -> PyResult<re_chunk_store::ViewContentsSelector> {
let descriptors = schema
.fields()
.iter()
.map(|field| ColumnDescriptor::try_from_arrow_field(None, field.as_ref()))
.filter_map(Result::ok)
.collect::<Vec<_>>();
let component_descriptors = descriptors
.iter()
.filter_map(|descriptor| match descriptor {
ColumnDescriptor::Component(component) => Some(component),
ColumnDescriptor::Time(_) => None,
})
.cloned()
.collect::<Vec<_>>();
let mut known_components = BTreeMap::<EntityPath, BTreeSet<ComponentDescriptor>>::new();
for component in &component_descriptors {
// We need to resolve the component name to the best one in the schema
// (e.g. "color" -> "rerun.color")
known_components
.entry(component.entity_path.clone())
.or_default()
.insert(component.into());
}
if let Ok(expr) = expr.extract::<String>() {
// `str`
let path_filter =
EntityPathFilter::parse_strict(&expr)
.map_err(|err| {
PyValueError::new_err(format!(
"Could not interpret `contents` as a ViewContentsLike. Failed to parse {expr}: {err}.",
))
})?.resolve_without_substitutions();
// Iterate every entity path in the schema
let contents = known_components
.keys()
.filter(|p| path_filter.matches(p))
.map(|p| (p.clone(), None))
.collect();
Ok(contents)
} else if let Ok(dict) = expr.downcast::<PyDict>() {
// `Union[ComponentLike, Sequence[ComponentLike]]]`
let mut contents = ViewContentsSelector::default();
for (key, value) in dict {
let key = key.extract::<String>().map_err(|_err| {
PyTypeError::new_err(
format!("Could not interpret `contents` as a ViewContentsLike. Key: {key} is not a path expression."),
)
})?;
let path_filter = EntityPathFilter::parse_strict(&key).map_err(|err| {
PyValueError::new_err(format!(
"Could not interpret `contents` as a ViewContentsLike. Failed to parse {key}: {err}.",
))
})?.resolve_without_substitutions();
let component_strs: BTreeSet<String> = if let Ok(component) =
value.extract::<ComponentLike>()
{
std::iter::once(component.0).collect()
} else if let Ok(components) = value.extract::<Vec<ComponentLike>>() {
components.into_iter().map(|c| c.0).collect()
} else {
return Err(PyTypeError::new_err(
format!("Could not interpret `contents` as a ViewContentsLike. Value: {value} is not a ComponentLike or Sequence[ComponentLike]."),
));
};
let mut key_contents = known_components
.keys()
.filter(|p| path_filter.matches(p))
.map(|entity_path| {
let components: BTreeSet<ComponentName> = component_strs
.iter()
.map(|component_name| {
find_best_component(&known_components, entity_path, component_name)
})
.collect();
(entity_path.clone(), Some(components))
})
.collect();
contents.append(&mut key_contents);
}
Ok(contents)
} else {
return Err(PyTypeError::new_err(
"Could not interpret `contents` as a ViewContentsLike. Top-level type must be a string or a dictionary.",
));
}
}
fn find_best_component(
mapping: &BTreeMap<EntityPath, BTreeSet<ComponentDescriptor>>,
entity_path: &EntityPath,
component_name: &str,
) -> ComponentName {
mapping
.get(entity_path)
.and_then(|components| {
components
.iter()
.find(|component| component.component_name.matches(component_name))
})
.map(|component| component.component_name)
.unwrap_or_else(|| ComponentName::new(component_name))
}