1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//! Plot dashboard stress test.
//!
//! Usage:
//! ```text
//! pixi run rs-plot-dashboard --help
//! ```
//!
//! Example:
//! ```text
//! pixi run rs-plot-dashboard --num-plots 10 --num-series-per-plot 5 --num-points-per-series 5000 --freq 1000
//! ```

use rerun::external::re_log;

#[derive(Debug, clap::ValueEnum, Clone)]
enum Order {
    Forwards,
    Backwards,
    Random,
}

#[derive(Debug, clap::ValueEnum, Clone)]
enum SeriesType {
    SinUniform,
    GaussianRandomWalk,
}

// TODO(cmc): could have flags to add attributes (color, radius...) to put some more stress
// on the line fragmenter.
#[derive(Debug, clap::Parser)]
#[clap(author, version, about)]
struct Args {
    #[command(flatten)]
    rerun: rerun::clap::RerunArgs,

    /// How many different plots?
    #[clap(long, default_value = "1")]
    num_plots: u64,

    /// How many series in each single plot?
    #[clap(long, default_value = "1")]
    num_series_per_plot: u64,

    /// How many points in each single series?
    #[clap(long, default_value = "10000")]
    num_points_per_series: u64,

    /// Frequency of logging (applies to all series).
    #[clap(long, default_value = "1000.0")]
    freq: f64,

    /// Frequency of logging (applies to all series).
    #[clap(long, default_value = None)]
    temporal_batch_size: Option<u64>,

    /// What order to log the data in (applies to all series).
    #[clap(long, value_enum, default_value = "forwards")]
    order: Order,

    /// The method used to generate time series.
    #[clap(long, value_enum, default_value = "gaussian-random-walk")]
    series_type: SeriesType,
}

fn main() -> anyhow::Result<()> {
    re_log::setup_logging();

    use clap::Parser as _;
    let args = Args::parse();

    let (rec, _serve_guard) = args.rerun.init("rerun_example_plot_dashboard_stress")?;
    run(&rec, &args)
}

fn run(rec: &rerun::RecordingStream, args: &Args) -> anyhow::Result<()> {
    let plot_paths: Vec<_> = (0..args.num_plots).map(|i| format!("plot_{i}")).collect();
    let series_paths: Vec<_> = (0..args.num_series_per_plot)
        .map(|i| format!("series_{i}"))
        .collect();

    let num_series = args.num_plots * args.num_series_per_plot;
    let mut time_per_tick = 1.0 / args.freq;
    let mut scalars_per_tick = num_series;
    if let Some(temporal_batch_size) = args.temporal_batch_size {
        time_per_tick *= temporal_batch_size as f64;
        scalars_per_tick *= temporal_batch_size;
    }

    let expected_total_freq = args.freq * num_series as f64;

    use rand::Rng as _;
    let mut rng = rand::thread_rng();
    let distr_uniform_pi = rand::distributions::Uniform::new(0f64, std::f64::consts::PI);
    let distr_std_normal = rand_distr::StandardNormal;

    let mut sim_times: Vec<f64> = (0..args.num_points_per_series as i64)
        .map(|i| time_per_tick * i as f64)
        .collect();
    match args.order {
        Order::Forwards => {}
        Order::Backwards => sim_times.reverse(),
        Order::Random => {
            use rand::seq::SliceRandom as _;
            sim_times.shuffle(&mut rng);
        }
    };

    let values_per_series: Vec<Vec<f64>> = std::iter::from_fn(|| {
        let mut value = 0.0;
        let values = (0..args.num_points_per_series)
            .map(|_| {
                match args.series_type {
                    SeriesType::SinUniform => value = rng.sample(distr_uniform_pi).sin(),
                    SeriesType::GaussianRandomWalk => {
                        value += rng.sample::<f64, _>(distr_std_normal);
                    }
                }
                value
            })
            .collect();
        Some(values)
    })
    .take(num_series as _)
    .collect();

    let offsets = (0..sim_times.len())
        .step_by(args.temporal_batch_size.unwrap_or(1) as usize)
        .collect::<Vec<_>>();

    let mut total_num_scalars = 0;
    let mut total_start_time = std::time::Instant::now();
    let mut max_load = 0.0;

    let mut tick_start_time = std::time::Instant::now();

    #[allow(clippy::unchecked_duration_subtraction)]
    for offset in offsets {
        if args.temporal_batch_size.is_none() {
            rec.set_time_seconds("sim_time", sim_times[offset]);
        }

        // Log

        for (plot_idx, plot_path) in plot_paths.iter().enumerate() {
            let plot_idx = plot_idx * args.num_series_per_plot as usize;
            for (series_idx, series_path) in series_paths.iter().enumerate() {
                let path = format!("{plot_path}/{series_path}");
                let series_values = &values_per_series[plot_idx + series_idx];
                if let Some(temporal_batch_size) = args.temporal_batch_size {
                    let temporal_batch_size = temporal_batch_size as usize;
                    let seconds = sim_times.iter().skip(offset).take(temporal_batch_size);
                    let values = series_values.iter().skip(offset).take(temporal_batch_size);
                    rec.send_columns(
                        path,
                        [rerun::TimeColumn::new_seconds("sim_time", seconds.copied())],
                        rerun::Scalar::update_fields()
                            .with_many_scalar(values.copied())
                            .columns_of_unit_batches()?,
                    )?;
                } else {
                    rec.log(path, &rerun::Scalar::new(series_values[offset]))?;
                }
            }
        }

        // Measure how long this took and how high the load was.

        let elapsed = tick_start_time.elapsed();
        max_load = f64::max(max_load, elapsed.as_secs_f64() / time_per_tick);

        // Throttle

        let sleep_duration = time_per_tick - elapsed.as_secs_f64();
        if sleep_duration > 0.0 {
            let sleep_duration = std::time::Duration::from_secs_f64(sleep_duration);
            let sleep_start_time = std::time::Instant::now();
            std::thread::sleep(sleep_duration);

            // We will very likely be put to sleep for more than we asked for, and therefore need
            // to pay off that debt in order to meet our frequency goal.
            let sleep_debt = sleep_start_time.elapsed() - sleep_duration;
            tick_start_time = std::time::Instant::now() - sleep_debt;
        } else {
            tick_start_time = std::time::Instant::now();
        }

        // Progress report
        //
        // Must come after throttle since we report every wall-clock second:
        // If ticks are large & fast, then after each send we run into throttle.
        // So if this was before throttle, we'd not report the first tick no matter how large it was.

        total_num_scalars += scalars_per_tick;
        let total_elapsed = total_start_time.elapsed();
        if total_elapsed.as_secs_f64() >= 1.0 {
            println!(
                        "logged {total_num_scalars} scalars over {:?} (freq={:.3}Hz, expected={expected_total_freq:.3}Hz, load={:.3}%)",
                        total_elapsed,
                        total_num_scalars as f64 / total_elapsed.as_secs_f64(),
                        max_load * 100.0,
                    );

            let elapsed_debt =
                std::time::Duration::from_secs_f64(total_elapsed.as_secs_f64().fract());
            total_start_time = std::time::Instant::now() - elapsed_debt;
            total_num_scalars = 0;
            max_load = 0.0;
        }
    }

    if total_num_scalars > 0 {
        let total_elapsed = total_start_time.elapsed();
        println!(
        "logged {total_num_scalars} scalars over {:?} (freq={:.3}Hz, expected={expected_total_freq:.3}Hz, load={:.3}%)",
        total_elapsed,
        total_num_scalars as f64 / total_elapsed.as_secs_f64(),
        max_load * 100.0,
    );
    }

    Ok(())
}