1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
//! This example demonstrates how to use the Rerun Rust SDK to log raw 3D meshes (so-called
//! "triangle soups") and their transform hierarchy.
//!
//! Usage:
//! ```
//! cargo run -p raw_mesh <path_to_gltf_scene>
//! ```

#![allow(clippy::doc_markdown)]

use std::path::PathBuf;

use bytes::Bytes;
use rerun::{external::re_log, Color, Mesh3D, RecordingStream, Rgba32};

// TODO(cmc): This example needs to support animations to showcase Rerun's time capabilities.

// --- Rerun logging ---

// Declare how to turn a glTF primitive into a Rerun component (`Mesh3D`).
#[allow(clippy::fallible_impl_from)]
impl From<GltfPrimitive> for Mesh3D {
    fn from(primitive: GltfPrimitive) -> Self {
        let GltfPrimitive {
            albedo_factor,
            indices,
            vertex_positions,
            vertex_colors,
            vertex_normals,
            vertex_texcoords,
        } = primitive;

        let mut mesh = Mesh3D::new(vertex_positions);

        if let Some(indices) = indices {
            assert!(indices.len() % 3 == 0);
            let triangle_indices = indices.chunks_exact(3).map(|tri| (tri[0], tri[1], tri[2]));
            mesh = mesh.with_triangle_indices(triangle_indices);
        }
        if let Some(vertex_normals) = vertex_normals {
            mesh = mesh.with_vertex_normals(vertex_normals);
        }
        if let Some(vertex_colors) = vertex_colors {
            mesh = mesh.with_vertex_colors(vertex_colors);
        }
        if let Some(vertex_texcoords) = vertex_texcoords {
            mesh = mesh.with_vertex_texcoords(vertex_texcoords);
        }
        if let Some([r, g, b, a]) = albedo_factor {
            mesh = mesh.with_albedo_factor(Rgba32::from_linear_unmultiplied_rgba_f32(r, g, b, a));
        }

        mesh.sanity_check().unwrap();

        mesh
    }
}

// Declare how to turn a glTF transform into a Rerun component (`Transform`).
impl From<GltfTransform> for rerun::Transform3D {
    fn from(transform: GltfTransform) -> Self {
        rerun::Transform3D::from_translation_rotation_scale(
            transform.t,
            rerun::datatypes::Quaternion::from_xyzw(transform.r),
            transform.s,
        )
    }
}

/// Log a glTF node with Rerun.
fn log_node(rec: &RecordingStream, node: GltfNode) -> anyhow::Result<()> {
    rec.set_time_sequence("keyframe", 0);

    if let Some(transform) = node.transform.map(rerun::Transform3D::from) {
        rec.log(node.name.as_str(), &transform)?;
    }

    // Convert glTF objects into Rerun components.
    for (i, primitive) in node.primitives.into_iter().enumerate() {
        let mesh: Mesh3D = primitive.into();
        rec.log(format!("{}/{}", node.name, i), &mesh)?;
    }

    // Recurse through all of the node's children!
    for mut child in node.children {
        child.name = [node.name.as_str(), child.name.as_str()].join("/");
        log_node(rec, child)?;
    }

    Ok(())
}

// --- Init ---

#[derive(Debug, Clone, Copy, clap::ValueEnum)]
enum Scene {
    Buggy,
    #[value(name("brain_stem"))]
    BrainStem,
    Lantern,
    Avocado,
}

#[derive(Debug, clap::Parser)]
#[clap(author, version, about)]
struct Args {
    #[command(flatten)]
    rerun: rerun::clap::RerunArgs,

    /// Specifies the glTF scene to load.
    #[clap(long, value_enum, default_value = "buggy")]
    scene: Scene,

    /// Specifies the path of an arbitrary glTF scene to load.
    #[clap(long)]
    scene_path: Option<PathBuf>,
}

// TODO(cmc): move all rerun args handling to helpers
impl Args {
    fn scene_path(&self) -> anyhow::Result<PathBuf> {
        if let Some(scene_path) = self.scene_path.clone() {
            return Ok(scene_path);
        }

        const DATASET_DIR: &str =
            concat!(env!("CARGO_MANIFEST_DIR"), "/../../python/raw_mesh/dataset");

        use clap::ValueEnum as _;
        let scene = self.scene.to_possible_value().unwrap();
        let scene_name = scene.get_name();

        let scene_path = PathBuf::from(DATASET_DIR)
            .join(scene_name)
            .join(format!("{scene_name}.glb"));
        if !scene_path.exists() {
            anyhow::bail!(
                "Could not load the scene, have you downloaded the dataset? \
                Try running the python version first to download it automatically \
                (`python -m raw_mesh --scene {scene_name}`).",
            )
        }

        Ok(scene_path)
    }
}

fn run(rec: &RecordingStream, args: &Args) -> anyhow::Result<()> {
    // Read glTF scene
    let (doc, buffers, _) = gltf::import_slice(Bytes::from(std::fs::read(args.scene_path()?)?))?;
    let nodes = load_gltf(&doc, &buffers);

    // Log raw glTF nodes and their transforms with Rerun
    for root in nodes {
        re_log::info!(scene = root.name, "logging glTF scene");
        rec.log_static(
            root.name.as_str(),
            &rerun::ViewCoordinates::RIGHT_HAND_Y_UP(),
        )?;
        log_node(rec, root)?;
    }

    Ok(())
}

fn main() -> anyhow::Result<()> {
    re_log::setup_logging();

    use clap::Parser as _;
    let args = Args::parse();

    let (rec, _serve_guard) = args.rerun.init("rerun_example_raw_mesh")?;
    run(&rec, &args)
}

// --- glTF parsing ---

struct GltfNode {
    name: String,
    transform: Option<GltfTransform>,
    primitives: Vec<GltfPrimitive>,
    children: Vec<GltfNode>,
}

struct GltfPrimitive {
    albedo_factor: Option<[f32; 4]>,
    indices: Option<Vec<u32>>,
    vertex_positions: Vec<[f32; 3]>,
    vertex_colors: Option<Vec<Color>>,
    vertex_normals: Option<Vec<[f32; 3]>>,
    #[allow(dead_code)]
    vertex_texcoords: Option<Vec<[f32; 2]>>,
}

struct GltfTransform {
    t: [f32; 3],
    r: [f32; 4],
    #[allow(dead_code)]
    s: [f32; 3],
}

impl GltfNode {
    fn from_gltf(buffers: &[gltf::buffer::Data], node: &gltf::Node<'_>) -> Self {
        let name = node_name(node);

        let transform = {
            let (t, r, s) = node.transform().decomposed();
            GltfTransform { t, r, s }
        };
        let primitives = node_primitives(buffers, node).collect();

        let children = node
            .children()
            .map(|child| GltfNode::from_gltf(buffers, &child))
            .collect();

        Self {
            name,
            transform: Some(transform),
            primitives,
            children,
        }
    }
}

fn node_name(node: &gltf::Node<'_>) -> String {
    node.name()
        .map_or_else(|| format!("node_{}", node.index()), ToOwned::to_owned)
}

fn node_primitives<'data>(
    buffers: &'data [gltf::buffer::Data],
    node: &'data gltf::Node<'_>,
) -> impl Iterator<Item = GltfPrimitive> + 'data {
    node.mesh().into_iter().flat_map(|mesh| {
        mesh.primitives().map(|primitive| {
            assert!(primitive.mode() == gltf::mesh::Mode::Triangles);

            let albedo_factor = primitive
                .material()
                .pbr_metallic_roughness()
                .base_color_factor()
                .into();

            let reader = primitive.reader(|buffer| Some(&buffers[buffer.index()]));

            let indices = reader.read_indices();
            let indices = indices.map(|indices| indices.into_u32().collect());

            let vertex_positions = reader.read_positions().unwrap();
            let vertex_positions = vertex_positions.collect();

            let vertex_normals = reader.read_normals();
            let vertex_normals = vertex_normals.map(|normals| normals.collect());

            let vertex_colors = reader.read_colors(0); // TODO(cmc): pick correct set
            let vertex_colors = vertex_colors.map(|colors| {
                colors
                    .into_rgba_u8()
                    .map(|[r, g, b, a]| Color::from_unmultiplied_rgba(r, g, b, a))
                    .collect()
            });

            let vertex_texcoords = reader.read_tex_coords(0); // TODO(cmc): pick correct set
            let vertex_texcoords = vertex_texcoords.map(|texcoords| texcoords.into_f32().collect());

            // TODO(cmc): support for albedo textures

            GltfPrimitive {
                albedo_factor,
                vertex_positions,
                indices,
                vertex_normals,
                vertex_colors,
                vertex_texcoords,
            }
        })
    })
}

fn load_gltf<'data>(
    doc: &'data gltf::Document,
    buffers: &'data [gltf::buffer::Data],
) -> impl Iterator<Item = GltfNode> + 'data {
    doc.scenes().map(move |scene| {
        let name = scene
            .name()
            .map_or_else(|| format!("scene_{}", scene.index()), ToOwned::to_owned);

        re_log::info!(scene = name, "parsing glTF scene");

        GltfNode {
            name,
            transform: None,
            primitives: Default::default(),
            children: scene
                .nodes()
                .map(|node| GltfNode::from_gltf(buffers, &node))
                .collect(),
        }
    })
}