1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
use arrow::{
    array::{
        Array, ArrayRef, ArrowPrimitiveType, BooleanArray, FixedSizeListArray, ListArray,
        PrimitiveArray, UInt32Array,
    },
    buffer::{NullBuffer, OffsetBuffer},
    datatypes::{DataType, Field},
    error::ArrowError,
};
use itertools::Itertools as _;

// ---------------------------------------------------------------------------------

/// Downcast an arrow array to another array, without having to go via `Any`.
pub trait ArrowArrayDowncastRef<'a>: 'a {
    /// Downcast an arrow array to another array, without having to go via `Any`.
    fn downcast_array_ref<T: Array + 'static>(self) -> Option<&'a T>;
}

impl<'a> ArrowArrayDowncastRef<'a> for &'a dyn Array {
    fn downcast_array_ref<T: Array + 'static>(self) -> Option<&'a T> {
        self.as_any().downcast_ref()
    }
}

impl<'a> ArrowArrayDowncastRef<'a> for &'a ArrayRef {
    fn downcast_array_ref<T: Array + 'static>(self) -> Option<&'a T> {
        self.as_any().downcast_ref()
    }
}

// ---------------------------------------------------------------------------------

#[inline]
pub fn into_arrow_ref(array: impl Array + 'static) -> ArrayRef {
    std::sync::Arc::new(array)
}

/// Returns an iterator with the lengths of the offsets.
pub fn offsets_lengths(
    offsets: &arrow::buffer::OffsetBuffer<i32>,
) -> impl Iterator<Item = usize> + '_ {
    // TODO(emilk): remove when we update to Arrow 54 (which has an API for this)
    offsets.windows(2).map(|w| {
        let start = w[0];
        let end = w[1];
        debug_assert!(
            start <= end && 0 <= start,
            "Bad arrow offset buffer: {start}, {end}"
        );
        end.saturating_sub(start).max(0) as usize
    })
}

/// Repartitions a [`ListArray`] according to the specified `lengths`, ignoring previous partitioning.
///
/// The specified `lengths` must sum to the total length underlying values (i.e. the child array).
///
/// The validity of the values is ignored.
#[inline]
pub fn repartition_list_array(
    list_array: ListArray,
    lengths: impl IntoIterator<Item = usize>,
) -> arrow::error::Result<ListArray> {
    let (field, _offsets, values, _nulls) = list_array.into_parts();

    let offsets = OffsetBuffer::from_lengths(lengths);
    let nulls = None;

    ListArray::try_new(field, offsets, values, nulls)
}

/// Returns true if the given `list_array` is semantically empty.
///
/// Semantic emptiness is defined as either one of these:
/// * The list is physically empty (literally no data).
/// * The list only contains null entries, or empty arrays, or a mix of both.
#[inline]
pub fn is_list_array_semantically_empty(list_array: &ListArray) -> bool {
    list_array.values().is_empty()
}

/// Create a sparse list-array out of an array of arrays.
///
/// All arrays must have the same datatype.
///
/// Returns `None` if `arrays` is empty.
#[inline]
pub fn arrays_to_list_array_opt(arrays: &[Option<&dyn Array>]) -> Option<ListArray> {
    let datatype = arrays
        .iter()
        .flatten()
        .map(|array| array.data_type().clone())
        .next()?;
    arrays_to_list_array(datatype, arrays)
}

/// An empty array of the given datatype.
// TODO(#3741): replace with `arrow::array::new_empty_array`
pub fn new_empty_array(datatype: &DataType) -> ArrayRef {
    let capacity = 0;
    arrow::array::make_builder(datatype, capacity).finish()
}

/// Create a sparse list-array out of an array of arrays.
///
/// Returns `None` if any of the specified `arrays` doesn't match the given `array_datatype`.
///
/// Returns an empty list if `arrays` is empty.
pub fn arrays_to_list_array(
    array_datatype: DataType,
    arrays: &[Option<&dyn Array>],
) -> Option<ListArray> {
    let arrays_dense = arrays.iter().flatten().copied().collect_vec();

    let data = if arrays_dense.is_empty() {
        new_empty_array(&array_datatype)
    } else {
        re_tracing::profile_scope!("concatenate", arrays_dense.len().to_string());
        concat_arrays(&arrays_dense)
            .map_err(|err| {
                re_log::warn_once!("failed to concatenate arrays: {err}");
                err
            })
            .ok()?
    };

    let nullable = true;
    let field = Field::new_list_field(array_datatype, nullable);

    let offsets = OffsetBuffer::from_lengths(
        arrays
            .iter()
            .map(|array| array.map_or(0, |array| array.len())),
    );

    #[allow(clippy::from_iter_instead_of_collect)]
    let nulls = NullBuffer::from_iter(arrays.iter().map(Option::is_some));

    Some(ListArray::new(field.into(), offsets, data, nulls.into()))
}

/// Given a sparse [`ListArray`] (i.e. an array with a nulls bitmap that contains at least
/// one falsy value), returns a dense [`ListArray`] that only contains the non-null values from
/// the original list.
///
/// This is a no-op if the original array is already dense.
pub fn sparse_list_array_to_dense_list_array(list_array: &ListArray) -> ListArray {
    if list_array.is_empty() {
        return list_array.clone();
    }

    let is_empty = list_array.nulls().is_some_and(|nulls| nulls.is_empty());
    if is_empty {
        return list_array.clone();
    }

    let offsets = OffsetBuffer::from_lengths(list_array.iter().flatten().map(|array| array.len()));

    let fields = list_array_fields(list_array);

    ListArray::new(fields, offsets, list_array.values().clone(), None)
}

fn list_array_fields(list_array: &arrow::array::GenericListArray<i32>) -> std::sync::Arc<Field> {
    match list_array.data_type() {
        DataType::List(fields) | DataType::LargeList(fields) => fields,
        _ => unreachable!("The GenericListArray constructor guaranteed we can't get here"),
    }
    .clone()
}

/// Create a new [`ListArray`] of target length by appending null values to its back.
///
/// This will share the same child data array buffer, but will create new offset and nulls buffers.
pub fn pad_list_array_back(list_array: &ListArray, target_len: usize) -> ListArray {
    let missing_len = target_len.saturating_sub(list_array.len());
    if missing_len == 0 {
        return list_array.clone();
    }

    let fields = list_array_fields(list_array);

    let offsets = {
        OffsetBuffer::from_lengths(
            list_array
                .iter()
                .map(|array| array.map_or(0, |array| array.len()))
                .chain(std::iter::repeat(0).take(missing_len)),
        )
    };

    let values = list_array.values().clone();

    let nulls = {
        if let Some(nulls) = list_array.nulls() {
            #[allow(clippy::from_iter_instead_of_collect)]
            NullBuffer::from_iter(
                nulls
                    .iter()
                    .chain(std::iter::repeat(false).take(missing_len)),
            )
        } else {
            #[allow(clippy::from_iter_instead_of_collect)]
            NullBuffer::from_iter(
                std::iter::repeat(true)
                    .take(list_array.len())
                    .chain(std::iter::repeat(false).take(missing_len)),
            )
        }
    };

    ListArray::new(fields, offsets, values, Some(nulls))
}

/// Create a new [`ListArray`] of target length by appending null values to its front.
///
/// This will share the same child data array buffer, but will create new offset and nulls buffers.
pub fn pad_list_array_front(list_array: &ListArray, target_len: usize) -> ListArray {
    let missing_len = target_len.saturating_sub(list_array.len());
    if missing_len == 0 {
        return list_array.clone();
    }

    let fields = list_array_fields(list_array);

    let offsets = {
        OffsetBuffer::from_lengths(
            std::iter::repeat(0).take(missing_len).chain(
                list_array
                    .iter()
                    .map(|array| array.map_or(0, |array| array.len())),
            ),
        )
    };

    let values = list_array.values().clone();

    let nulls = {
        if let Some(nulls) = list_array.nulls() {
            #[allow(clippy::from_iter_instead_of_collect)]
            NullBuffer::from_iter(
                std::iter::repeat(false)
                    .take(missing_len)
                    .chain(nulls.iter()),
            )
        } else {
            #[allow(clippy::from_iter_instead_of_collect)]
            NullBuffer::from_iter(
                std::iter::repeat(false)
                    .take(missing_len)
                    .chain(std::iter::repeat(true).take(list_array.len())),
            )
        }
    };

    ListArray::new(fields, offsets, values, Some(nulls))
}

/// Returns a new [[`ListArray`]] with len `entries`.
///
/// Each entry will be an empty array of the given `child_datatype`.
pub fn new_list_array_of_empties(child_datatype: &DataType, len: usize) -> ListArray {
    let empty_array = new_empty_array(child_datatype);

    let offsets = OffsetBuffer::from_lengths(std::iter::repeat(0).take(len));

    let nullable = true;
    ListArray::new(
        Field::new_list_field(empty_array.data_type().clone(), nullable).into(),
        offsets,
        empty_array,
        None,
    )
}

/// Applies a [`arrow::compute::concat`] kernel to the given `arrays`.
///
/// Early outs where it makes sense (e.g. `arrays.len() == 1`).
///
/// Returns an error if the arrays don't share the exact same datatype.
pub fn concat_arrays(arrays: &[&dyn Array]) -> arrow::error::Result<ArrayRef> {
    #[allow(clippy::disallowed_methods)] // that's the whole point
    let mut array = arrow::compute::concat(arrays)?;
    array.shrink_to_fit(); // VERY IMPORTANT! https://github.com/rerun-io/rerun/issues/7222
    Ok(array)
}

/// Applies a [filter] kernel to the given `array`.
///
/// Panics iff the length of the filter doesn't match the length of the array.
///
/// In release builds, filters are allowed to have null entries (they will be interpreted as `false`).
/// In debug builds, null entries will panic.
///
/// Note: a `filter` kernel _copies_ the data in order to make the resulting arrays contiguous in memory.
///
/// Takes care of up- and down-casting the data back and forth on behalf of the caller.
///
/// [filter]: arrow::compute::filter
pub fn filter_array<A: Array + Clone + 'static>(array: &A, filter: &BooleanArray) -> A {
    assert_eq!(
        array.len(), filter.len(),
        "the length of the filter must match the length of the array (the underlying kernel will panic otherwise)",
    );
    debug_assert!(
        filter.nulls().is_none(),
        "filter masks with nulls bits are technically valid, but generally a sign that something went wrong",
    );

    #[allow(clippy::disallowed_methods)] // that's the whole point
    #[allow(clippy::unwrap_used)]
    let mut array = arrow::compute::filter(array, filter)
        // Unwrap: this literally cannot fail.
        .unwrap()
        .as_any()
        .downcast_ref::<A>()
        // Unwrap: that's initial type that we got.
        .unwrap()
        .clone();
    array.shrink_to_fit(); // VERY IMPORTANT! https://github.com/rerun-io/rerun/issues/7222
    array
}

/// Applies a [take] kernel to the given `array`.
///
/// In release builds, indices are allowed to have null entries (they will be taken as `null`s).
/// In debug builds, null entries will panic.
///
/// Note: a `take` kernel _copies_ the data in order to make the resulting arrays contiguous in memory.
///
/// Takes care of up- and down-casting the data back and forth on behalf of the caller.
///
/// [take]: arrow::compute::take
//
// TODO(cmc): in an ideal world, a `take` kernel should merely _slice_ the data and avoid any allocations/copies
// where possible (e.g. list-arrays).
// That is not possible with vanilla [`ListArray`]s since they don't expose any way to encode optional lengths,
// in addition to offsets.
// For internal stuff, we could perhaps provide a custom implementation that returns a `DictionaryArray` instead?
pub fn take_array<A, O>(array: &A, indices: &PrimitiveArray<O>) -> A
where
    A: Array + Clone + 'static,
    O: ArrowPrimitiveType,
    O::Native: std::ops::Add<Output = O::Native>,
{
    use arrow::datatypes::ArrowNativeTypeOp as _;

    debug_assert!(
        indices.nulls().is_none(),
        "index arrays with nulls bits are technically valid, but generally a sign that something went wrong",
    );

    if indices.len() == array.len() {
        let indices = indices.values();

        let starts_at_zero = || indices[0] == O::Native::ZERO;
        let is_consecutive = || {
            indices
                .windows(2)
                .all(|values| values[1] == values[0] + O::Native::ONE)
        };

        if starts_at_zero() && is_consecutive() {
            #[allow(clippy::unwrap_used)]
            return array
                .clone()
                .as_any()
                .downcast_ref::<A>()
                // Unwrap: that's initial type that we got.
                .unwrap()
                .clone();
        }
    }

    #[allow(clippy::disallowed_methods)] // that's the whole point
    #[allow(clippy::unwrap_used)]
    let mut array = arrow::compute::take(array, indices, Default::default())
        // Unwrap: this literally cannot fail.
        .unwrap()
        .as_any()
        .downcast_ref::<A>()
        // Unwrap: that's initial type that we got.
        .unwrap()
        .clone();
    array.shrink_to_fit(); // VERY IMPORTANT! https://github.com/rerun-io/rerun/issues/7222
    array
}

/// Extract the element at `idx` from a `FixedSizeListArray`.
///
/// For example:
/// `[[1, 2], [3, 4], [5, 6]] -> [1, 3, 5]`
pub fn extract_fixed_size_array_element(
    data: &FixedSizeListArray,
    idx: u32,
) -> Result<ArrayRef, ArrowError> {
    let num_elements = data.value_length() as u32;
    let num_values = data.len() as u32;

    let indices = UInt32Array::from(
        (0..num_values)
            .map(|i| i * num_elements + idx)
            .collect::<Vec<_>>(),
    );

    // We have forbidden using arrow::take, but it really is what we want here
    // `take_array` results in an unwrap so it appears not to be the right choice.
    // TODO(jleibs): Follow up with cmc on if there's a different way to do this.
    #[allow(clippy::disallowed_methods)]
    arrow::compute::kernels::take::take(data.values(), &indices, None)
}