1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
use std::collections::BTreeMap;
use arrow2::{
array::{Array as ArrowArray, PrimitiveArray as ArrowPrimitiveArray},
datatypes::DataType as ArrowDatatype,
};
use itertools::Itertools;
use nohash_hasher::IntMap;
use re_log_types::{EntityPath, TimeInt, TimePoint, Timeline};
use re_types_core::{AsComponents, ComponentBatch, ComponentName};
use crate::{Chunk, ChunkId, ChunkResult, RowId, TimeColumn};
// ---
/// Helper to incrementally build a [`Chunk`].
///
/// Can be created using [`Chunk::builder`].
pub struct ChunkBuilder {
id: ChunkId,
entity_path: EntityPath,
row_ids: Vec<RowId>,
timelines: BTreeMap<Timeline, TimeColumnBuilder>,
components: BTreeMap<ComponentName, Vec<Option<Box<dyn ArrowArray>>>>,
}
impl Chunk {
/// Initializes a new [`ChunkBuilder`].
#[inline]
pub fn builder(entity_path: EntityPath) -> ChunkBuilder {
ChunkBuilder::new(ChunkId::new(), entity_path)
}
/// Initializes a new [`ChunkBuilder`].
///
/// The final [`Chunk`] will have the specified `id`.
#[inline]
pub fn builder_with_id(id: ChunkId, entity_path: EntityPath) -> ChunkBuilder {
ChunkBuilder::new(id, entity_path)
}
}
impl ChunkBuilder {
/// Initializes a new [`ChunkBuilder`].
///
/// See also [`Chunk::builder`].
#[inline]
pub fn new(id: ChunkId, entity_path: EntityPath) -> Self {
Self {
id,
entity_path,
row_ids: Vec::new(),
timelines: BTreeMap::new(),
components: BTreeMap::new(),
}
}
/// Add a row's worth of data using the given sparse component data.
pub fn with_sparse_row(
mut self,
row_id: RowId,
timepoint: impl Into<TimePoint>,
components: impl IntoIterator<Item = (ComponentName, Option<Box<dyn ArrowArray>>)>,
) -> Self {
let components = components.into_iter().collect_vec();
// Align all columns by appending null values for rows where we don't have data.
for (component_name, _) in &components {
let arrays = self.components.entry(*component_name).or_default();
arrays.extend(
std::iter::repeat(None).take(self.row_ids.len().saturating_sub(arrays.len())),
);
}
self.row_ids.push(row_id);
for (timeline, time) in timepoint.into() {
self.timelines
.entry(timeline)
.or_insert_with(|| TimeColumn::builder(timeline))
.with_row(time);
}
for (component_name, array) in components {
self.components
.entry(component_name)
.or_default()
.push(array);
}
// Align all columns by appending null values for rows where we don't have data.
for arrays in self.components.values_mut() {
arrays.extend(
std::iter::repeat(None).take(self.row_ids.len().saturating_sub(arrays.len())),
);
}
self
}
/// Add a row's worth of data using the given component data.
#[inline]
pub fn with_row(
self,
row_id: RowId,
timepoint: impl Into<TimePoint>,
components: impl IntoIterator<Item = (ComponentName, Box<dyn ArrowArray>)>,
) -> Self {
self.with_sparse_row(
row_id,
timepoint,
components
.into_iter()
.map(|(component_name, array)| (component_name, Some(array))),
)
}
/// Add a row's worth of data by destructuring an archetype into component columns.
#[inline]
pub fn with_archetype(
self,
row_id: RowId,
timepoint: impl Into<TimePoint>,
as_components: &dyn AsComponents,
) -> Self {
let batches = as_components.as_component_batches();
self.with_component_batches(
row_id,
timepoint,
batches.iter().map(|batch| batch.as_ref()),
)
}
/// Add a row's worth of data by serializing a single [`ComponentBatch`].
#[inline]
pub fn with_component_batch(
self,
row_id: RowId,
timepoint: impl Into<TimePoint>,
component_batch: &dyn ComponentBatch,
) -> Self {
self.with_row(
row_id,
timepoint,
component_batch
.to_arrow()
.ok()
.map(|array| (component_batch.name(), array)),
)
}
/// Add a row's worth of data by serializing many [`ComponentBatch`]es.
#[inline]
pub fn with_component_batches<'a>(
self,
row_id: RowId,
timepoint: impl Into<TimePoint>,
component_batches: impl IntoIterator<Item = &'a dyn ComponentBatch>,
) -> Self {
self.with_row(
row_id,
timepoint,
component_batches.into_iter().filter_map(|component_batch| {
component_batch
.to_arrow()
.ok()
.map(|array| (component_batch.name(), array))
}),
)
}
/// Add a row's worth of data by serializing many sparse [`ComponentBatch`]es.
#[inline]
pub fn with_sparse_component_batches<'a>(
self,
row_id: RowId,
timepoint: impl Into<TimePoint>,
component_batches: impl IntoIterator<Item = (ComponentName, Option<&'a dyn ComponentBatch>)>,
) -> Self {
self.with_sparse_row(
row_id,
timepoint,
component_batches
.into_iter()
.map(|(component_name, component_batch)| {
(
component_name,
component_batch.and_then(|batch| batch.to_arrow().ok()),
)
}),
)
}
/// Builds and returns the final [`Chunk`].
///
/// The arrow datatype of each individual column will be guessed by inspecting the data.
///
/// If any component column turns out to be fully sparse (i.e. only null values), that column
/// will be stripped out (how could we guess its datatype without any single value to inspect)?
///
/// This is generally the desired behavior but, if you want to make sure to keep fully sparse
/// columns (can be useful e.g. for testing purposes), see [`ChunkBuilder::build_with_datatypes`]
/// instead.
///
/// This returns an error if the chunk fails to `sanity_check`.
#[inline]
pub fn build(self) -> ChunkResult<Chunk> {
re_tracing::profile_function!();
let Self {
id,
entity_path,
row_ids,
timelines,
components,
} = self;
let timelines = {
re_tracing::profile_scope!("timelines");
timelines
.into_iter()
.map(|(timeline, time_column)| (timeline, time_column.build()))
.collect()
};
let components = {
re_tracing::profile_scope!("components");
components
.into_iter()
.filter_map(|(component_name, arrays)| {
let arrays = arrays.iter().map(|array| array.as_deref()).collect_vec();
crate::util::arrays_to_list_array_opt(&arrays)
.map(|list_array| (component_name, list_array))
})
.collect()
};
Chunk::from_native_row_ids(id, entity_path, None, &row_ids, timelines, components)
}
/// Builds and returns the final [`Chunk`].
///
/// The arrow datatype of each individual column will be guessed by inspecting the data.
///
/// If any component column turns out to be fully sparse (i.e. only null values), `datatypes`
/// will be used as a fallback.
///
/// If any component column turns out to be fully sparse (i.e. only null values) _and_ doesn't
/// have an explicit datatype passed in, that column will be stripped out (how could we guess
/// its datatype without any single value to inspect)?
///
/// You should rarely want to keep fully sparse columns around outside of testing scenarios.
/// See [`Self::build`].
///
/// This returns an error if the chunk fails to `sanity_check`.
#[inline]
pub fn build_with_datatypes(
self,
datatypes: &IntMap<ComponentName, ArrowDatatype>,
) -> ChunkResult<Chunk> {
let Self {
id,
entity_path,
row_ids,
timelines,
components,
} = self;
Chunk::from_native_row_ids(
id,
entity_path,
None,
&row_ids,
timelines
.into_iter()
.map(|(timeline, time_column)| (timeline, time_column.build()))
.collect(),
components
.into_iter()
.filter_map(|(component_name, arrays)| {
let arrays = arrays.iter().map(|array| array.as_deref()).collect_vec();
// If we know the datatype in advance, we're able to keep even fully sparse
// columns around.
if let Some(datatype) = datatypes.get(&component_name) {
crate::util::arrays_to_list_array(datatype.clone(), &arrays)
.map(|list_array| (component_name, list_array))
} else {
crate::util::arrays_to_list_array_opt(&arrays)
.map(|list_array| (component_name, list_array))
}
})
.collect(),
)
}
}
// ---
/// Helper to incrementally build a [`TimeColumn`].
///
/// Can be created using [`TimeColumn::builder`].
pub struct TimeColumnBuilder {
timeline: Timeline,
times: Vec<i64>,
}
impl TimeColumn {
/// Initializes a new [`TimeColumnBuilder`].
#[inline]
pub fn builder(timeline: Timeline) -> TimeColumnBuilder {
TimeColumnBuilder::new(timeline)
}
}
impl TimeColumnBuilder {
/// Initializes a new [`TimeColumnBuilder`].
///
/// See also [`TimeColumn::builder`].
#[inline]
pub fn new(timeline: Timeline) -> Self {
Self {
timeline,
times: Vec::new(),
}
}
/// Add a row's worth of time data using the given timestamp.
#[inline]
pub fn with_row(&mut self, time: TimeInt) -> &mut Self {
let Self { timeline: _, times } = self;
times.push(time.as_i64());
self
}
/// Builds and returns the final [`TimeColumn`].
#[inline]
pub fn build(self) -> TimeColumn {
let Self { timeline, times } = self;
let times = ArrowPrimitiveArray::<i64>::from_vec(times).to(timeline.datatype());
TimeColumn::new(None, timeline, times)
}
}