1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/// A unique ID for a [`crate::Chunk`].
///
/// `Chunk`s are the atomic unit of ingestion, transport, storage, events and GC in Rerun.
///
/// Internally, a [`crate::Chunk`] is made up of rows, which are themselves uniquely identified by
/// their [`RowId`].
///
/// There is no relationship whatsoever between a [`ChunkId`] and the [`RowId`]s within that chunk.
///
/// ### Uniqueness
///
/// [`ChunkId`] are assumed unique within a single Recording.
///
/// The chunk store will treat two chunks with the same [`ChunkId`] as the same, and only keep one
/// of them (which one is kept is an arbitrary and unstable implementation detail).
///
/// This makes it easy to build and maintain secondary indices around [`RowId`]s with few to no
/// extraneous state tracking.
///
/// ### Garbage collection
///
/// Garbage collection is handled at the chunk level by first ordering the chunks based on the minimum
/// [`RowId`] present in each of them.
/// Garbage collection therefore happens (roughly) in the logger's wall-clock order.
///
/// This has very important implications when inserting data far into the past or into the future:
/// think carefully about your `RowId`s in these cases.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct ChunkId(pub(crate) re_tuid::Tuid);
impl std::fmt::Display for ChunkId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.0.fmt(f)
}
}
impl ChunkId {
pub const ZERO: Self = Self(re_tuid::Tuid::ZERO);
pub const MAX: Self = Self(re_tuid::Tuid::MAX);
/// Create a new unique [`ChunkId`] based on the current time.
#[allow(clippy::new_without_default)]
#[inline]
pub fn new() -> Self {
Self(re_tuid::Tuid::new())
}
/// Returns the next logical [`ChunkId`].
///
/// Beware: wrong usage can easily lead to conflicts.
/// Prefer [`ChunkId::new`] when unsure.
#[must_use]
#[inline]
pub fn next(&self) -> Self {
Self(self.0.next())
}
/// Returns the `n`-next logical [`ChunkId`].
///
/// This is equivalent to calling [`ChunkId::next`] `n` times.
/// Wraps the monotonically increasing back to zero on overflow.
///
/// Beware: wrong usage can easily lead to conflicts.
/// Prefer [`ChunkId::new`] when unsure.
#[must_use]
#[inline]
pub fn incremented_by(&self, n: u64) -> Self {
Self(self.0.incremented_by(n))
}
/// When the `ChunkId` was created, in nanoseconds since unix epoch.
#[inline]
pub fn nanoseconds_since_epoch(&self) -> u64 {
self.0.nanoseconds_since_epoch()
}
#[inline]
pub fn from_u128(id: u128) -> Self {
Self(re_tuid::Tuid::from_u128(id))
}
#[inline]
pub fn as_u128(&self) -> u128 {
self.0.as_u128()
}
}
impl re_types_core::SizeBytes for ChunkId {
#[inline]
fn heap_size_bytes(&self) -> u64 {
0
}
#[inline]
fn is_pod() -> bool {
true
}
}
impl std::ops::Deref for ChunkId {
type Target = re_tuid::Tuid;
#[inline]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::DerefMut for ChunkId {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
re_types_core::delegate_arrow_tuid!(ChunkId as "rerun.controls.ChunkId");
// ---
/// A unique ID for a row's worth of data within a chunk.
///
/// There is no relationship whatsoever between a [`ChunkId`] and the [`RowId`]s within that chunk.
///
/// ### Uniqueness
///
/// Duplicated [`RowId`]s within a single recording is considered undefined behavior.
///
/// While it is benign in most cases, care has to be taken when manually crafting [`RowId`]s.
/// Ideally: don't do so and stick to [`RowId::new`] instead to avoid bad surprises.
///
/// This makes it easy to build and maintain secondary indices around [`RowId`]s with few to no
/// extraneous state tracking.
///
/// ### Query
///
/// Queries (both latest-at & range semantics) will defer to `RowId` order as a tie-breaker when
/// looking at several rows worth of data that rest at the exact same timestamp.
///
/// In pseudo-code:
/// ```text
/// rr.set_time_sequence("frame", 10)
///
/// rr.log("my_entity", point1, row_id=#1)
/// rr.log("my_entity", point2, row_id=#0)
///
/// rr.query("my_entity", at=("frame", 10)) # returns `point1`
/// ```
///
/// Think carefully about your `RowId`s when logging a lot of data at the same timestamp.
///
/// ### Garbage collection
///
/// Garbage collection is handled at the chunk level by first ordering the chunks based on the minimum
/// [`RowId`] present in each of them.
/// Garbage collection therefore happens (roughly) in the logger's wall-clock order.
///
/// This has very important implications when inserting data far into the past or into the future:
/// think carefully about your `RowId`s in these cases.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct RowId(pub(crate) re_tuid::Tuid);
impl std::fmt::Display for RowId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.0.fmt(f)
}
}
impl RowId {
pub const ZERO: Self = Self(re_tuid::Tuid::ZERO);
pub const MAX: Self = Self(re_tuid::Tuid::MAX);
/// Create a new unique [`RowId`] based on the current time.
#[allow(clippy::new_without_default)]
#[inline]
pub fn new() -> Self {
Self(re_tuid::Tuid::new())
}
#[inline]
pub fn from_tuid(tuid: re_tuid::Tuid) -> Self {
Self(tuid)
}
/// Returns the next logical [`RowId`].
///
/// Beware: wrong usage can easily lead to conflicts.
/// Prefer [`RowId::new`] when unsure.
#[must_use]
#[inline]
pub fn next(&self) -> Self {
Self(self.0.next())
}
/// Returns the `n`-next logical [`RowId`].
///
/// This is equivalent to calling [`RowId::next`] `n` times.
/// Wraps the monotonically increasing back to zero on overflow.
///
/// Beware: wrong usage can easily lead to conflicts.
/// Prefer [`RowId::new`] when unsure.
#[must_use]
#[inline]
pub fn incremented_by(&self, n: u64) -> Self {
Self(self.0.incremented_by(n))
}
/// When the `RowId` was created, in nanoseconds since unix epoch.
#[inline]
pub fn nanoseconds_since_epoch(&self) -> u64 {
self.0.nanoseconds_since_epoch()
}
#[inline]
pub fn from_u128(id: u128) -> Self {
Self(re_tuid::Tuid::from_u128(id))
}
#[inline]
pub fn as_u128(&self) -> u128 {
self.0.as_u128()
}
}
impl re_types_core::SizeBytes for RowId {
#[inline]
fn heap_size_bytes(&self) -> u64 {
0
}
#[inline]
fn is_pod() -> bool {
true
}
}
impl std::ops::Deref for RowId {
type Target = re_tuid::Tuid;
#[inline]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl std::ops::DerefMut for RowId {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
re_types_core::delegate_arrow_tuid!(RowId as "rerun.controls.RowId");