1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
use arrow2::{
array::{
Array as Arrow2Array, ListArray, PrimitiveArray as Arrow2PrimitiveArray,
StructArray as Arrow2StructArray,
},
chunk::Chunk as Arrow2Chunk,
datatypes::{
DataType as Arrow2Datatype, Field as ArrowField, Metadata as Arrow2Metadata,
Schema as Arrow2Schema, TimeUnit as ArrowTimeUnit,
},
};
use itertools::Itertools;
use nohash_hasher::IntMap;
use re_log_types::{EntityPath, Timeline};
use re_types_core::{Component as _, ComponentDescriptor, Loggable as _, SizeBytes};
use crate::{chunk::ChunkComponents, Chunk, ChunkError, ChunkId, ChunkResult, RowId, TimeColumn};
// ---
/// A [`Chunk`] that is ready for transport. Obtained by calling [`Chunk::to_transport`].
///
/// Implemented as an Arrow dataframe: a schema and a batch.
///
/// Use the `Display` implementation to dump the chunk as a nicely formatted table.
///
/// This has a stable ABI! The entire point of this type is to allow users to send raw arrow data
/// into Rerun.
/// This means we have to be very careful when checking the validity of the data: slipping corrupt
/// data into the store could silently break all the index search logic (e.g. think of a chunk
/// claiming to be sorted while it is in fact not).
#[derive(Debug, Clone)]
pub struct TransportChunk {
/// The schema of the dataframe, and all chunk-level and field-level metadata.
///
/// Take a look at the `TransportChunk::CHUNK_METADATA_*` and `TransportChunk::FIELD_METADATA_*`
/// constants for more information about available metadata.
pub schema: Arrow2Schema,
/// All the control, time and component data.
pub data: Arrow2Chunk<Box<dyn Arrow2Array>>,
}
impl std::fmt::Display for TransportChunk {
#[inline]
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
re_format_arrow::format_dataframe(
&self.schema.metadata,
&self.schema.fields,
self.data.iter().map(|list_array| &**list_array),
)
.fmt(f)
}
}
// TODO(#6572): Relying on Arrow's native schema metadata feature is bound to fail, we need to
// switch to something more powerful asap.
impl TransportChunk {
/// The key used to identify a Rerun [`ChunkId`] in chunk-level [`Arrow2Schema`] metadata.
pub const CHUNK_METADATA_KEY_ID: &'static str = "rerun.id";
/// The key used to identify a Rerun [`EntityPath`] in chunk-level [`Arrow2Schema`] metadata.
pub const CHUNK_METADATA_KEY_ENTITY_PATH: &'static str = "rerun.entity_path";
/// The key used to identify the size in bytes of the data, once loaded in memory, in chunk-level
/// [`Arrow2Schema`] metadata.
pub const CHUNK_METADATA_KEY_HEAP_SIZE_BYTES: &'static str = "rerun.heap_size_bytes";
/// The marker used to identify whether a chunk is sorted in chunk-level [`Arrow2Schema`] metadata.
///
/// The associated value is irrelevant -- if this marker is present, then it is true.
///
/// Chunks are ascendingly sorted by their `RowId` column.
pub const CHUNK_METADATA_MARKER_IS_SORTED_BY_ROW_ID: &'static str = "rerun.is_sorted";
/// The key used to identify the kind of a Rerun column in field-level [`Arrow2Schema`] metadata.
///
/// That is: control columns (e.g. `row_id`), time columns or component columns.
pub const FIELD_METADATA_KEY_KIND: &'static str = "rerun.kind";
/// The value used to identify a Rerun time column in field-level [`Arrow2Schema`] metadata.
pub const FIELD_METADATA_VALUE_KIND_TIME: &'static str = "time";
/// The value used to identify a Rerun control column in field-level [`Arrow2Schema`] metadata.
pub const FIELD_METADATA_VALUE_KIND_CONTROL: &'static str = "control";
/// The value used to identify a Rerun data column in field-level [`Arrow2Schema`] metadata.
pub const FIELD_METADATA_VALUE_KIND_DATA: &'static str = "data";
/// The key used to identify the [`crate::ArchetypeName`] in field-level [`Arrow2Schema`] metadata.
pub const FIELD_METADATA_KEY_ARCHETYPE_NAME: &'static str = "rerun.archetype_name";
/// The key used to identify the [`crate::ArchetypeFieldName`] in field-level [`Arrow2Schema`] metadata.
pub const FIELD_METADATA_KEY_ARCHETYPE_FIELD_NAME: &'static str = "rerun.archetype_field_name";
/// The marker used to identify whether a column is sorted in field-level [`Arrow2Schema`] metadata.
///
/// The associated value is irrelevant -- if this marker is present, then it is true.
///
/// Chunks are ascendingly sorted by their `RowId` column but, depending on whether the data
/// was logged out of order or not for a given time column, that column might follow the global
/// `RowId` while still being unsorted relative to its own time order.
pub const FIELD_METADATA_MARKER_IS_SORTED_BY_TIME: &'static str =
Self::CHUNK_METADATA_MARKER_IS_SORTED_BY_ROW_ID;
/// Returns the appropriate chunk-level [`Arrow2Schema`] metadata for a Rerun [`ChunkId`].
#[inline]
pub fn chunk_metadata_id(id: ChunkId) -> Arrow2Metadata {
[
(
Self::CHUNK_METADATA_KEY_ID.to_owned(),
format!("{:X}", id.as_u128()),
), //
]
.into()
}
/// Returns the appropriate chunk-level [`Arrow2Schema`] metadata for the in-memory size in bytes.
#[inline]
pub fn chunk_metadata_heap_size_bytes(heap_size_bytes: u64) -> Arrow2Metadata {
[
(
Self::CHUNK_METADATA_KEY_HEAP_SIZE_BYTES.to_owned(),
heap_size_bytes.to_string(),
), //
]
.into()
}
/// Returns the appropriate chunk-level [`Arrow2Schema`] metadata for a Rerun [`EntityPath`].
#[inline]
pub fn chunk_metadata_entity_path(entity_path: &EntityPath) -> Arrow2Metadata {
[
(
Self::CHUNK_METADATA_KEY_ENTITY_PATH.to_owned(),
entity_path.to_string(),
), //
]
.into()
}
/// Returns the appropriate chunk-level [`Arrow2Schema`] metadata for an `IS_SORTED` marker.
#[inline]
pub fn chunk_metadata_is_sorted() -> Arrow2Metadata {
[
(
Self::CHUNK_METADATA_MARKER_IS_SORTED_BY_ROW_ID.to_owned(),
String::new(),
), //
]
.into()
}
/// Returns the appropriate field-level [`Arrow2Schema`] metadata for a Rerun time column.
#[inline]
pub fn field_metadata_time_column() -> Arrow2Metadata {
[
(
Self::FIELD_METADATA_KEY_KIND.to_owned(),
Self::FIELD_METADATA_VALUE_KIND_TIME.to_owned(),
), //
]
.into()
}
/// Returns the appropriate field-level [`Arrow2Schema`] metadata for a Rerun control column.
#[inline]
pub fn field_metadata_control_column() -> Arrow2Metadata {
[
(
Self::FIELD_METADATA_KEY_KIND.to_owned(),
Self::FIELD_METADATA_VALUE_KIND_CONTROL.to_owned(),
), //
]
.into()
}
/// Returns the appropriate field-level [`Arrow2Schema`] metadata for a Rerun data column.
#[inline]
pub fn field_metadata_data_column() -> Arrow2Metadata {
[
(
Self::FIELD_METADATA_KEY_KIND.to_owned(),
Self::FIELD_METADATA_VALUE_KIND_DATA.to_owned(),
), //
]
.into()
}
/// Returns the appropriate field-level [`Arrow2Schema`] metadata for an `IS_SORTED` marker.
#[inline]
pub fn field_metadata_is_sorted() -> Arrow2Metadata {
[
(
Self::FIELD_METADATA_MARKER_IS_SORTED_BY_TIME.to_owned(),
String::new(),
), //
]
.into()
}
#[inline]
pub fn field_metadata_component_descriptor(
component_desc: &ComponentDescriptor,
) -> Arrow2Metadata {
component_desc
.archetype_name
.iter()
.copied()
.map(|archetype_name| {
(
Self::FIELD_METADATA_KEY_ARCHETYPE_NAME.to_owned(),
archetype_name.to_string(),
)
})
.chain(component_desc.archetype_field_name.iter().copied().map(
|archetype_field_name| {
(
Self::FIELD_METADATA_KEY_ARCHETYPE_FIELD_NAME.to_owned(),
archetype_field_name.to_string(),
)
},
))
.collect()
}
#[inline]
pub fn component_descriptor_from_field(field: &ArrowField) -> ComponentDescriptor {
ComponentDescriptor {
archetype_name: field
.metadata
.get(Self::FIELD_METADATA_KEY_ARCHETYPE_NAME)
.cloned()
.map(Into::into),
component_name: field.name.clone().into(),
archetype_field_name: field
.metadata
.get(Self::FIELD_METADATA_KEY_ARCHETYPE_FIELD_NAME)
.cloned()
.map(Into::into),
}
}
}
impl TransportChunk {
#[inline]
pub fn id(&self) -> ChunkResult<ChunkId> {
if let Some(id) = self.schema.metadata.get(Self::CHUNK_METADATA_KEY_ID) {
let id = u128::from_str_radix(id, 16).map_err(|err| ChunkError::Malformed {
reason: format!("cannot deserialize chunk id: {err}"),
})?;
Ok(ChunkId::from_u128(id))
} else {
Err(crate::ChunkError::Malformed {
reason: format!(
"chunk id missing from metadata ({:?})",
self.schema.metadata
),
})
}
}
#[inline]
pub fn entity_path(&self) -> ChunkResult<EntityPath> {
match self
.schema
.metadata
.get(Self::CHUNK_METADATA_KEY_ENTITY_PATH)
{
Some(entity_path) => Ok(EntityPath::parse_forgiving(entity_path)),
None => Err(crate::ChunkError::Malformed {
reason: format!(
"entity path missing from metadata ({:?})",
self.schema.metadata
),
}),
}
}
#[inline]
pub fn heap_size_bytes(&self) -> Option<u64> {
self.schema
.metadata
.get(Self::CHUNK_METADATA_KEY_HEAP_SIZE_BYTES)
.and_then(|s| s.parse::<u64>().ok())
}
/// Looks in the chunk metadata for the `IS_SORTED` marker.
///
/// It is possible that a chunk is sorted but didn't set that marker.
/// This is fine, although wasteful.
#[inline]
pub fn is_sorted(&self) -> bool {
self.schema
.metadata
.contains_key(Self::CHUNK_METADATA_MARKER_IS_SORTED_BY_ROW_ID)
}
/// Iterates all columns of the specified `kind`.
///
/// See:
/// * [`Self::FIELD_METADATA_VALUE_KIND_TIME`]
/// * [`Self::FIELD_METADATA_VALUE_KIND_CONTROL`]
/// * [`Self::FIELD_METADATA_VALUE_KIND_DATA`]
#[inline]
pub fn columns<'a>(
&'a self,
kind: &'a str,
) -> impl Iterator<Item = (&'a ArrowField, &'a Box<dyn Arrow2Array>)> + 'a {
self.schema
.fields
.iter()
.enumerate()
.filter_map(|(i, field)| {
let actual_kind = field.metadata.get(Self::FIELD_METADATA_KEY_KIND);
(actual_kind.map(|s| s.as_str()) == Some(kind))
.then(|| self.data.columns().get(i).map(|column| (field, column)))
.flatten()
})
}
#[inline]
pub fn all_columns(&self) -> impl Iterator<Item = (&ArrowField, &Box<dyn Arrow2Array>)> + '_ {
self.schema
.fields
.iter()
.enumerate()
.filter_map(|(i, field)| self.data.columns().get(i).map(|column| (field, column)))
}
/// Iterates all control columns present in this chunk.
#[inline]
pub fn controls(&self) -> impl Iterator<Item = (&ArrowField, &Box<dyn Arrow2Array>)> {
self.columns(Self::FIELD_METADATA_VALUE_KIND_CONTROL)
}
/// Iterates all data columns present in this chunk.
#[inline]
pub fn components(&self) -> impl Iterator<Item = (&ArrowField, &Box<dyn Arrow2Array>)> {
self.columns(Self::FIELD_METADATA_VALUE_KIND_DATA)
}
/// Iterates all timeline columns present in this chunk.
#[inline]
pub fn timelines(&self) -> impl Iterator<Item = (&ArrowField, &Box<dyn Arrow2Array>)> {
self.columns(Self::FIELD_METADATA_VALUE_KIND_TIME)
}
/// How many columns in total? Includes control, time, and component columns.
#[inline]
pub fn num_columns(&self) -> usize {
self.data.columns().len()
}
#[inline]
pub fn num_controls(&self) -> usize {
self.controls().count()
}
#[inline]
pub fn num_timelines(&self) -> usize {
self.timelines().count()
}
#[inline]
pub fn num_components(&self) -> usize {
self.components().count()
}
#[inline]
pub fn num_rows(&self) -> usize {
self.data.len()
}
}
impl Chunk {
/// Prepare the [`Chunk`] for transport.
///
/// It is probably a good idea to sort the chunk first.
pub fn to_transport(&self) -> ChunkResult<TransportChunk> {
self.sanity_check()?;
re_tracing::profile_function!(format!(
"num_columns={} num_rows={}",
self.num_columns(),
self.num_rows()
));
let Self {
id,
entity_path,
heap_size_bytes: _, // use the method instead because of lazy initialization
is_sorted,
row_ids,
timelines,
components,
} = self;
let mut schema = Arrow2Schema::default();
let mut columns = Vec::with_capacity(1 /* row_ids */ + timelines.len() + components.len());
// Chunk-level metadata
{
re_tracing::profile_scope!("metadata");
schema
.metadata
.extend(TransportChunk::chunk_metadata_id(*id));
schema
.metadata
.extend(TransportChunk::chunk_metadata_entity_path(entity_path));
schema
.metadata
.extend(TransportChunk::chunk_metadata_heap_size_bytes(
self.heap_size_bytes(),
));
if *is_sorted {
schema
.metadata
.extend(TransportChunk::chunk_metadata_is_sorted());
}
}
// Row IDs
{
re_tracing::profile_scope!("row ids");
schema.fields.push(
ArrowField::new(
RowId::descriptor().to_string(),
row_ids.data_type().clone(),
false,
)
.with_metadata(TransportChunk::field_metadata_control_column()),
);
columns.push(row_ids.clone().boxed());
}
// Timelines
{
re_tracing::profile_scope!("timelines");
let mut timelines = timelines
.iter()
.map(|(timeline, info)| {
let TimeColumn {
timeline: _,
times,
is_sorted,
time_range: _,
} = info;
let field = ArrowField::new(
timeline.name().to_string(),
times.data_type().clone(),
false, // timelines within a single chunk are always dense
)
.with_metadata({
let mut metadata = TransportChunk::field_metadata_time_column();
if *is_sorted {
metadata.extend(TransportChunk::field_metadata_is_sorted());
}
metadata
});
let times = times.clone().boxed() /* cheap */;
(field, times)
})
.collect_vec();
timelines.sort_by(|(field1, _times1), (field2, _times2)| field1.name.cmp(&field2.name));
for (field, times) in timelines {
schema.fields.push(field);
columns.push(times);
}
}
// Components
{
re_tracing::profile_scope!("components");
let mut components = components
.values()
.flat_map(|per_desc| per_desc.iter())
.map(|(component_desc, list_array)| {
let field = ArrowField::new(
component_desc.component_name.to_string(),
list_array.data_type().clone(),
true,
)
.with_metadata({
let mut metadata = TransportChunk::field_metadata_data_column();
metadata.extend(TransportChunk::field_metadata_component_descriptor(
component_desc,
));
metadata
});
let data = list_array.clone().boxed();
(field, data)
})
.collect_vec();
components.sort_by(|(field1, _data1), (field2, _data2)| field1.name.cmp(&field2.name));
for (field, data) in components {
schema.fields.push(field);
columns.push(data);
}
}
Ok(TransportChunk {
schema,
data: Arrow2Chunk::new(columns),
})
}
pub fn from_transport(transport: &TransportChunk) -> ChunkResult<Self> {
re_tracing::profile_function!(format!(
"num_columns={} num_rows={}",
transport.num_columns(),
transport.num_rows()
));
// Metadata
let (id, entity_path, is_sorted) = {
re_tracing::profile_scope!("metadata");
(
transport.id()?,
transport.entity_path()?,
transport.is_sorted(),
)
};
// Row IDs
let row_ids = {
re_tracing::profile_scope!("row ids");
let Some(row_ids) = transport.controls().find_map(|(field, column)| {
// TODO(cmc): disgusting, but good enough for now.
(field.name == RowId::descriptor().component_name.as_str()).then_some(column)
}) else {
return Err(ChunkError::Malformed {
reason: format!("missing row_id column ({:?})", transport.schema),
});
};
row_ids
.as_any()
.downcast_ref::<Arrow2StructArray>()
.ok_or_else(|| ChunkError::Malformed {
reason: format!(
"RowId data has the wrong datatype: expected {:?} but got {:?} instead",
RowId::arrow2_datatype(),
*row_ids.data_type(),
),
})?
.clone()
};
// Timelines
let timelines = {
re_tracing::profile_scope!("timelines");
let mut timelines = IntMap::default();
for (field, column) in transport.timelines() {
// See also [`Timeline::datatype`]
let timeline = match column.data_type().to_logical_type() {
Arrow2Datatype::Int64 => Timeline::new_sequence(field.name.as_str()),
Arrow2Datatype::Timestamp(ArrowTimeUnit::Nanosecond, None) => {
Timeline::new_temporal(field.name.as_str())
}
_ => {
return Err(ChunkError::Malformed {
reason: format!(
"time column '{}' is not deserializable ({:?})",
field.name,
column.data_type()
),
});
}
};
let times = column
.as_any()
.downcast_ref::<Arrow2PrimitiveArray<i64>>()
.ok_or_else(|| ChunkError::Malformed {
reason: format!(
"time column '{}' is not deserializable ({:?})",
field.name,
column.data_type()
),
})?;
if times.validity().is_some() {
return Err(ChunkError::Malformed {
reason: format!(
"time column '{}' must be dense ({:?})",
field.name,
column.data_type()
),
});
}
let is_sorted = field
.metadata
.contains_key(TransportChunk::FIELD_METADATA_MARKER_IS_SORTED_BY_TIME);
let time_column = TimeColumn::new(
is_sorted.then_some(true),
timeline,
times.clone(), /* cheap */
);
if timelines.insert(timeline, time_column).is_some() {
return Err(ChunkError::Malformed {
reason: format!(
"time column '{}' was specified more than once",
field.name,
),
});
}
}
timelines
};
// Components
let components = {
let mut components = ChunkComponents::default();
for (field, column) in transport.components() {
let column = column
.as_any()
.downcast_ref::<ListArray<i32>>()
.ok_or_else(|| ChunkError::Malformed {
reason: format!(
"The outer array in a chunked component batch must be a sparse list, got {:?}",
column.data_type(),
),
})?;
let component_desc = TransportChunk::component_descriptor_from_field(field);
if components
.insert_descriptor(component_desc, column.clone())
.is_some()
{
return Err(ChunkError::Malformed {
reason: format!(
"component column '{}' was specified more than once",
field.name,
),
});
}
}
components
};
let mut res = Self::new(
id,
entity_path,
is_sorted.then_some(true),
row_ids,
timelines,
components,
)?;
if let Some(heap_size_bytes) = transport.heap_size_bytes() {
res.heap_size_bytes = heap_size_bytes.into();
}
Ok(res)
}
}
impl Chunk {
#[inline]
pub fn from_arrow_msg(msg: &re_log_types::ArrowMsg) -> ChunkResult<Self> {
let re_log_types::ArrowMsg {
chunk_id: _,
timepoint_max: _,
schema,
chunk,
on_release: _,
} = msg;
Self::from_transport(&TransportChunk {
schema: schema.clone(),
data: chunk.clone(),
})
}
#[inline]
pub fn to_arrow_msg(&self) -> ChunkResult<re_log_types::ArrowMsg> {
re_tracing::profile_function!();
self.sanity_check()?;
let transport = self.to_transport()?;
Ok(re_log_types::ArrowMsg {
chunk_id: re_tuid::Tuid::from_u128(self.id().as_u128()),
timepoint_max: self.timepoint_max(),
schema: transport.schema,
chunk: transport.data,
on_release: None,
})
}
}
#[cfg(test)]
mod tests {
use nohash_hasher::IntMap;
use re_log_types::{
example_components::{MyColor, MyPoint},
Timeline,
};
use super::*;
#[test]
fn roundtrip() -> anyhow::Result<()> {
let entity_path = EntityPath::parse_forgiving("a/b/c");
let timeline1 = Timeline::new_temporal("log_time");
let timelines1 = std::iter::once((
timeline1,
TimeColumn::new(
Some(true),
timeline1,
Arrow2PrimitiveArray::<i64>::from_vec(vec![42, 43, 44, 45]),
),
))
.collect();
let timelines2 = IntMap::default(); // static
let points1 = MyPoint::to_arrow2([
MyPoint::new(1.0, 2.0),
MyPoint::new(3.0, 4.0),
MyPoint::new(5.0, 6.0),
])?;
let points2 = None;
let points3 = MyPoint::to_arrow2([MyPoint::new(10.0, 20.0)])?;
let points4 = MyPoint::to_arrow2([MyPoint::new(100.0, 200.0), MyPoint::new(300.0, 400.0)])?;
let colors1 = MyColor::to_arrow2([
MyColor::from_rgb(1, 2, 3),
MyColor::from_rgb(4, 5, 6),
MyColor::from_rgb(7, 8, 9),
])?;
let colors2 = MyColor::to_arrow2([MyColor::from_rgb(10, 20, 30)])?;
let colors3 = None;
let colors4 = None;
let components = [
(MyPoint::descriptor(), {
let list_array = crate::util::arrays_to_list_array_opt(&[
Some(&*points1),
points2,
Some(&*points3),
Some(&*points4),
])
.unwrap();
assert_eq!(4, list_array.len());
list_array
}),
(MyPoint::descriptor(), {
let list_array = crate::util::arrays_to_list_array_opt(&[
Some(&*colors1),
Some(&*colors2),
colors3,
colors4,
])
.unwrap();
assert_eq!(4, list_array.len());
list_array
}),
];
let row_ids = vec![RowId::new(), RowId::new(), RowId::new(), RowId::new()];
for timelines in [timelines1, timelines2] {
let chunk_original = Chunk::from_native_row_ids(
ChunkId::new(),
entity_path.clone(),
None,
&row_ids,
timelines.clone(),
components.clone().into_iter().collect(),
)?;
let mut chunk_before = chunk_original.clone();
for _ in 0..3 {
let chunk_in_transport = chunk_before.to_transport()?;
#[cfg(feature = "arrow")]
let chunk_after = {
let chunk_in_record_batch = chunk_in_transport.try_to_arrow_record_batch()?;
let chunk_roundtrip =
TransportChunk::from_arrow_record_batch(&chunk_in_record_batch);
Chunk::from_transport(&chunk_roundtrip)?
};
#[cfg(not(feature = "arrow"))]
let chunk_after = { Chunk::from_transport(&chunk_in_transport)? };
assert_eq!(
chunk_in_transport.entity_path()?,
*chunk_original.entity_path()
);
assert_eq!(
chunk_in_transport.entity_path()?,
*chunk_after.entity_path()
);
assert_eq!(
chunk_in_transport.heap_size_bytes(),
Some(chunk_after.heap_size_bytes()),
);
assert_eq!(
chunk_in_transport.num_columns(),
chunk_original.num_columns()
);
assert_eq!(chunk_in_transport.num_columns(), chunk_after.num_columns());
assert_eq!(chunk_in_transport.num_rows(), chunk_original.num_rows());
assert_eq!(chunk_in_transport.num_rows(), chunk_after.num_rows());
assert_eq!(
chunk_in_transport.num_controls(),
chunk_original.num_controls()
);
assert_eq!(
chunk_in_transport.num_controls(),
chunk_after.num_controls()
);
assert_eq!(
chunk_in_transport.num_timelines(),
chunk_original.num_timelines()
);
assert_eq!(
chunk_in_transport.num_timelines(),
chunk_after.num_timelines()
);
assert_eq!(
chunk_in_transport.num_components(),
chunk_original.num_components()
);
assert_eq!(
chunk_in_transport.num_components(),
chunk_after.num_components()
);
eprintln!("{chunk_before}");
eprintln!("{chunk_in_transport}");
eprintln!("{chunk_after}");
#[cfg(not(feature = "arrow"))]
{
// This will fail when round-tripping all the way to record-batch
// the below check should always pass regardless.
assert_eq!(chunk_before, chunk_after);
}
assert!(chunk_before.are_equal_ignoring_extension_types(&chunk_after));
chunk_before = chunk_after;
}
}
Ok(())
}
}