1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
use arrow2::{
    array::{
        Array as Arrow2Array, BooleanArray as Arrow2BooleanArray,
        DictionaryArray as ArrowDictionaryArray, ListArray as ArrowListArray,
        PrimitiveArray as Arrow2PrimitiveArray,
    },
    bitmap::Bitmap as ArrowBitmap,
    datatypes::DataType as Arrow2Datatype,
    offset::Offsets as ArrowOffsets,
};
use itertools::Itertools;

use crate::TransportChunk;

// ---

/// Returns true if the given `list_array` is semantically empty.
///
/// Semantic emptiness is defined as either one of these:
/// * The list is physically empty (literally no data).
/// * The list only contains null entries, or empty arrays, or a mix of both.
pub fn is_list_array_semantically_empty(list_array: &ArrowListArray<i32>) -> bool {
    let is_physically_empty = || list_array.is_empty();

    let is_all_nulls = || {
        list_array
            .validity()
            .map_or(false, |bitmap| bitmap.unset_bits() == list_array.len())
    };

    let is_all_empties = || list_array.offsets().lengths().all(|len| len == 0);

    let is_a_mix_of_nulls_and_empties =
        || list_array.iter().flatten().all(|array| array.is_empty());

    is_physically_empty() || is_all_nulls() || is_all_empties() || is_a_mix_of_nulls_and_empties()
}

/// Create a sparse list-array out of an array of arrays.
///
/// All arrays must have the same datatype.
///
/// Returns `None` if `arrays` is empty.
#[inline]
pub fn arrays_to_list_array_opt(
    arrays: &[Option<&dyn Arrow2Array>],
) -> Option<ArrowListArray<i32>> {
    let datatype = arrays
        .iter()
        .flatten()
        .map(|array| array.data_type().clone())
        .next()?;
    arrays_to_list_array(datatype, arrays)
}

/// Create a sparse list-array out of an array of arrays.
///
/// Returns `None` if any of the specified `arrays` doesn't match the given `array_datatype`.
///
/// Returns an empty list if `arrays` is empty.
pub fn arrays_to_list_array(
    array_datatype: Arrow2Datatype,
    arrays: &[Option<&dyn Arrow2Array>],
) -> Option<ArrowListArray<i32>> {
    let arrays_dense = arrays.iter().flatten().copied().collect_vec();

    let data = if arrays_dense.is_empty() {
        arrow2::array::new_empty_array(array_datatype.clone())
    } else {
        re_tracing::profile_scope!("concatenate", arrays_dense.len().to_string());
        concat_arrays(&arrays_dense)
            .map_err(|err| {
                re_log::warn_once!("failed to concatenate arrays: {err}");
                err
            })
            .ok()?
    };

    let datatype = ArrowListArray::<i32>::default_datatype(array_datatype);

    #[allow(clippy::unwrap_used)] // yes, these are indeed lengths
    let offsets = ArrowOffsets::try_from_lengths(
        arrays
            .iter()
            .map(|array| array.map_or(0, |array| array.len())),
    )
    .unwrap();

    #[allow(clippy::from_iter_instead_of_collect)]
    let validity = ArrowBitmap::from_iter(arrays.iter().map(Option::is_some));

    Some(ArrowListArray::<i32>::new(
        datatype,
        offsets.into(),
        data,
        validity.into(),
    ))
}

/// Create a sparse dictionary-array out of an array of (potentially) duplicated arrays.
///
/// The `Idx` is used as primary key to drive the deduplication process.
/// Returns `None` if any of the specified `arrays` doesn't match the given `array_datatype`.
///
/// Returns an empty dictionary if `arrays` is empty.
//
// TODO(cmc): Ideally I would prefer to just use the array's underlying pointer as primary key, but
// this has proved extremely brittle in practice. Maybe once we move to arrow-rs.
// TODO(cmc): A possible improvement would be to pick the smallest key datatype possible based
// on the cardinality of the input arrays.
pub fn arrays_to_dictionary<Idx: Copy + Eq>(
    array_datatype: &Arrow2Datatype,
    arrays: &[Option<(Idx, &dyn Arrow2Array)>],
) -> Option<ArrowDictionaryArray<i32>> {
    // Dedupe the input arrays based on the given primary key.
    let arrays_dense_deduped = arrays
        .iter()
        .flatten()
        .copied()
        .dedup_by(|(lhs_index, _), (rhs_index, _)| lhs_index == rhs_index)
        .map(|(_index, array)| array)
        .collect_vec();

    // Compute the keys for the final dictionary, using that same primary key.
    let keys = {
        let mut cur_key = 0i32;
        arrays
            .iter()
            .dedup_by_with_count(|lhs, rhs| {
                lhs.map(|(index, _)| index) == rhs.map(|(index, _)| index)
            })
            .flat_map(|(count, value)| {
                if value.is_some() {
                    let keys = std::iter::repeat(Some(cur_key)).take(count);
                    cur_key += 1;
                    keys
                } else {
                    std::iter::repeat(None).take(count)
                }
            })
            .collect_vec()
    };

    // Concatenate the underlying data as usual, except only the _unique_ values!
    // We still need the underlying data to be a list-array, so the dictionary's keys can index
    // into this list-array.
    let data = if arrays_dense_deduped.is_empty() {
        arrow2::array::new_empty_array(array_datatype.clone())
    } else {
        let values = concat_arrays(&arrays_dense_deduped)
            .map_err(|err| {
                re_log::warn_once!("failed to concatenate arrays: {err}");
                err
            })
            .ok()?;

        #[allow(clippy::unwrap_used)] // yes, these are indeed lengths
        let offsets =
            ArrowOffsets::try_from_lengths(arrays_dense_deduped.iter().map(|array| array.len()))
                .unwrap();

        ArrowListArray::<i32>::new(array_datatype.clone(), offsets.into(), values, None).to_boxed()
    };

    let datatype = Arrow2Datatype::Dictionary(
        arrow2::datatypes::IntegerType::Int32,
        std::sync::Arc::new(array_datatype.clone()),
        true, // is_sorted
    );

    // And finally we build our dictionary, which indexes into our concatenated list-array of
    // unique values.
    ArrowDictionaryArray::try_new(
        datatype,
        Arrow2PrimitiveArray::<i32>::from(keys),
        data.to_boxed(),
    )
    .ok()
}

/// Given a sparse `ArrowListArray` (i.e. an array with a validity bitmap that contains at least
/// one falsy value), returns a dense `ArrowListArray` that only contains the non-null values from
/// the original list.
///
/// This is a no-op if the original array is already dense.
pub fn sparse_list_array_to_dense_list_array(
    list_array: &ArrowListArray<i32>,
) -> ArrowListArray<i32> {
    if list_array.is_empty() {
        return list_array.clone();
    }

    let is_empty = list_array
        .validity()
        .map_or(false, |validity| validity.is_empty());
    if is_empty {
        return list_array.clone();
    }

    #[allow(clippy::unwrap_used)] // yes, these are indeed lengths
    let offsets =
        ArrowOffsets::try_from_lengths(list_array.iter().flatten().map(|array| array.len()))
            .unwrap();

    ArrowListArray::<i32>::new(
        list_array.data_type().clone(),
        offsets.into(),
        list_array.values().clone(),
        None,
    )
}

/// Create a new `ListArray` of target length by appending null values to its back.
///
/// This will share the same child data array buffer, but will create new offset and validity buffers.
pub fn pad_list_array_back(
    list_array: &ArrowListArray<i32>,
    target_len: usize,
) -> ArrowListArray<i32> {
    let missing_len = target_len.saturating_sub(list_array.len());
    if missing_len == 0 {
        return list_array.clone();
    }

    let datatype = list_array.data_type().clone();

    let offsets = {
        #[allow(clippy::unwrap_used)] // yes, these are indeed lengths
        ArrowOffsets::try_from_lengths(
            list_array
                .iter()
                .map(|array| array.map_or(0, |array| array.len()))
                .chain(std::iter::repeat(0).take(missing_len)),
        )
        .unwrap()
    };

    let values = list_array.values().clone();

    let validity = {
        if let Some(validity) = list_array.validity() {
            #[allow(clippy::from_iter_instead_of_collect)]
            ArrowBitmap::from_iter(
                validity
                    .iter()
                    .chain(std::iter::repeat(false).take(missing_len)),
            )
        } else {
            #[allow(clippy::from_iter_instead_of_collect)]
            ArrowBitmap::from_iter(
                std::iter::repeat(true)
                    .take(list_array.len())
                    .chain(std::iter::repeat(false).take(missing_len)),
            )
        }
    };

    ArrowListArray::new(datatype, offsets.into(), values, Some(validity))
}

/// Create a new `ListArray` of target length by appending null values to its front.
///
/// This will share the same child data array buffer, but will create new offset and validity buffers.
pub fn pad_list_array_front(
    list_array: &ArrowListArray<i32>,
    target_len: usize,
) -> ArrowListArray<i32> {
    let missing_len = target_len.saturating_sub(list_array.len());
    if missing_len == 0 {
        return list_array.clone();
    }

    let datatype = list_array.data_type().clone();

    let offsets = {
        #[allow(clippy::unwrap_used)] // yes, these are indeed lengths
        ArrowOffsets::try_from_lengths(
            std::iter::repeat(0).take(missing_len).chain(
                list_array
                    .iter()
                    .map(|array| array.map_or(0, |array| array.len())),
            ),
        )
        .unwrap()
    };

    let values = list_array.values().clone();

    let validity = {
        if let Some(validity) = list_array.validity() {
            #[allow(clippy::from_iter_instead_of_collect)]
            ArrowBitmap::from_iter(
                std::iter::repeat(false)
                    .take(missing_len)
                    .chain(validity.iter()),
            )
        } else {
            #[allow(clippy::from_iter_instead_of_collect)]
            ArrowBitmap::from_iter(
                std::iter::repeat(false)
                    .take(missing_len)
                    .chain(std::iter::repeat(true).take(list_array.len())),
            )
        }
    };

    ArrowListArray::new(datatype, offsets.into(), values, Some(validity))
}

/// Returns a new [`ArrowListArray`] with len `entries`.
///
/// Each entry will be an empty array of the given `child_datatype`.
pub fn new_list_array_of_empties(
    child_datatype: Arrow2Datatype,
    len: usize,
) -> ArrowListArray<i32> {
    let empty_array = arrow2::array::new_empty_array(child_datatype);

    #[allow(clippy::unwrap_used)] // yes, these are indeed lengths
    let offsets = ArrowOffsets::try_from_lengths(std::iter::repeat(0).take(len)).unwrap();

    ArrowListArray::<i32>::new(
        ArrowListArray::<i32>::default_datatype(empty_array.data_type().clone()),
        offsets.into(),
        empty_array.to_boxed(),
        None,
    )
}

/// Applies a [concatenate] kernel to the given `arrays`.
///
/// Early outs where it makes sense (e.g. `arrays.len() == 1`).
///
/// Returns an error if the arrays don't share the exact same datatype.
///
/// [concatenate]: arrow2::compute::concatenate::concatenate
pub fn concat_arrays(arrays: &[&dyn Arrow2Array]) -> arrow2::error::Result<Box<dyn Arrow2Array>> {
    if arrays.len() == 1 {
        return Ok(arrays[0].to_boxed());
    }

    #[allow(clippy::disallowed_methods)] // that's the whole point
    arrow2::compute::concatenate::concatenate(arrays)
}

/// Applies a [filter] kernel to the given `array`.
///
/// Panics iff the length of the filter doesn't match the length of the array.
///
/// In release builds, filters are allowed to have null entries (they will be interpreted as `false`).
/// In debug builds, null entries will panic.
///
/// Note: a `filter` kernel _copies_ the data in order to make the resulting arrays contiguous in memory.
///
/// Takes care of up- and down-casting the data back and forth on behalf of the caller.
///
/// [filter]: arrow2::compute::filter::filter
pub fn filter_array<A: Arrow2Array + Clone>(array: &A, filter: &Arrow2BooleanArray) -> A {
    assert_eq!(
        array.len(), filter.len(),
        "the length of the filter must match the length of the array (the underlying kernel will panic otherwise)",
    );
    debug_assert!(
        filter.validity().is_none(),
        "filter masks with validity bits are technically valid, but generally a sign that something went wrong",
    );

    #[allow(clippy::disallowed_methods)] // that's the whole point
    #[allow(clippy::unwrap_used)]
    arrow2::compute::filter::filter(array, filter)
        // Unwrap: this literally cannot fail.
        .unwrap()
        .as_any()
        .downcast_ref::<A>()
        // Unwrap: that's initial type that we got.
        .unwrap()
        .clone()
}

/// Applies a [take] kernel to the given `array`.
///
/// In release builds, indices are allowed to have null entries (they will be taken as `null`s).
/// In debug builds, null entries will panic.
///
/// Note: a `take` kernel _copies_ the data in order to make the resulting arrays contiguous in memory.
///
/// Takes care of up- and down-casting the data back and forth on behalf of the caller.
///
/// [take]: arrow2::compute::take::take
//
// TODO(cmc): in an ideal world, a `take` kernel should merely _slice_ the data and avoid any allocations/copies
// where possible (e.g. list-arrays).
// That is not possible with vanilla `ListArray`s since they don't expose any way to encode optional lengths,
// in addition to offsets.
// For internal stuff, we could perhaps provide a custom implementation that returns a `DictionaryArray` instead?
pub fn take_array<A: Arrow2Array + Clone, O: arrow2::types::Index>(
    array: &A,
    indices: &Arrow2PrimitiveArray<O>,
) -> A {
    debug_assert!(
        indices.validity().is_none(),
        "index arrays with validity bits are technically valid, but generally a sign that something went wrong",
    );

    if indices.len() == array.len() {
        let indices = indices.values().as_slice();

        let starts_at_zero = || indices[0] == O::zero();
        let is_consecutive = || {
            indices
                .windows(2)
                .all(|values| values[1] == values[0] + O::one())
        };

        if starts_at_zero() && is_consecutive() {
            #[allow(clippy::unwrap_used)]
            return array
                .clone()
                .as_any()
                .downcast_ref::<A>()
                // Unwrap: that's initial type that we got.
                .unwrap()
                .clone();
        }
    }

    #[allow(clippy::disallowed_methods)] // that's the whole point
    #[allow(clippy::unwrap_used)]
    arrow2::compute::take::take(array, indices)
        // Unwrap: this literally cannot fail.
        .unwrap()
        .as_any()
        .downcast_ref::<A>()
        // Unwrap: that's initial type that we got.
        .unwrap()
        .clone()
}

// ---

use arrow2::{chunk::Chunk as Arrow2Chunk, datatypes::Schema as Arrow2Schema};

/// Concatenate multiple [`TransportChunk`]s into one.
///
/// This is a temporary method that we use while waiting to migrate towards `arrow-rs`.
/// * `arrow2` doesn't have a `RecordBatch` type, therefore we emulate that using our `TransportChunk`s.
/// * `arrow-rs` does have one, and it natively supports concatenation.
pub fn concatenate_record_batches(
    schema: Arrow2Schema,
    batches: &[TransportChunk],
) -> anyhow::Result<TransportChunk> {
    assert!(batches.iter().map(|batch| &batch.schema).all_equal());

    let mut arrays = Vec::new();

    if !batches.is_empty() {
        for (i, _field) in schema.fields.iter().enumerate() {
            let array = concat_arrays(
                &batches
                    .iter()
                    .map(|batch| &*batch.data[i] as &dyn Arrow2Array)
                    .collect_vec(),
            )?;
            arrays.push(array);
        }
    }

    Ok(TransportChunk {
        schema,
        data: Arrow2Chunk::new(arrays),
    })
}