1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
use std::{
collections::{btree_map::Entry as BTreeMapEntry, hash_map::Entry as HashMapEntry, BTreeSet},
time::Duration,
};
use ahash::{HashMap, HashSet};
use nohash_hasher::IntMap;
use web_time::Instant;
use re_chunk::{Chunk, ChunkId};
use re_log_types::{EntityPath, ResolvedTimeRange, TimeInt, Timeline};
use re_types_core::{ComponentName, SizeBytes};
use crate::{
store::ChunkIdSetPerTime, ChunkStore, ChunkStoreChunkStats, ChunkStoreDiff, ChunkStoreDiffKind,
ChunkStoreEvent, ChunkStoreStats,
};
// Used all over in docstrings.
#[allow(unused_imports)]
use crate::RowId;
// ---
#[derive(Debug, Clone, Copy)]
pub enum GarbageCollectionTarget {
/// Try to drop _at least_ the given fraction.
///
/// The fraction must be a float in the range [0.0 : 1.0].
DropAtLeastFraction(f64),
/// GC Everything that isn't protected.
Everything,
}
#[derive(Debug, Clone)]
pub struct GarbageCollectionOptions {
/// What target threshold should the GC try to meet.
pub target: GarbageCollectionTarget,
/// How long the garbage collection in allowed to run for.
///
/// Trades off latency for throughput:
/// - A smaller `time_budget` will clear less data in a shorter amount of time, allowing for a
/// more responsive UI at the cost of more GC overhead and more frequent runs.
/// - A larger `time_budget` will clear more data in a longer amount of time, increasing the
/// chance of UI freeze frames but decreasing GC overhead and running less often.
///
/// The default is an unbounded time budget (i.e. throughput only).
pub time_budget: Duration,
/// How many component revisions to preserve on each timeline.
pub protect_latest: usize,
/// Do not remove any data within these time ranges.
pub protected_time_ranges: HashMap<Timeline, ResolvedTimeRange>,
}
impl GarbageCollectionOptions {
pub fn gc_everything() -> Self {
Self {
target: GarbageCollectionTarget::Everything,
time_budget: std::time::Duration::MAX,
protect_latest: 0,
protected_time_ranges: Default::default(),
}
}
/// If true, we cannot remove this chunk.
pub fn is_chunk_protected(&self, chunk: &Chunk) -> bool {
for (timeline, protected_time_range) in &self.protected_time_ranges {
if let Some(time_column) = chunk.timelines().get(timeline) {
if time_column.time_range().intersects(*protected_time_range) {
return true;
}
}
}
false
}
}
impl std::fmt::Display for GarbageCollectionTarget {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::DropAtLeastFraction(p) => {
write!(f, "DropAtLeast({:.3}%)", *p * 100.0)
}
Self::Everything => write!(f, "Everything"),
}
}
}
pub type RemovableChunkIdPerTimePerComponentPerTimelinePerEntity =
IntMap<EntityPath, IntMap<Timeline, IntMap<ComponentName, HashMap<TimeInt, Vec<ChunkId>>>>>;
impl ChunkStore {
/// Triggers a garbage collection according to the desired `target`.
///
/// Returns the list of `Chunk`s that were purged from the store in the form of [`ChunkStoreEvent`]s.
///
/// ## Semantics
///
/// Garbage collection works on a chunk-level basis and is driven by [`RowId`] order
/// (specifically, the smallest `RowId` of each respective Chunk), i.e. the order defined
/// by the clients' wall-clocks, allowing it to drop data across the different timelines in
/// a fair, deterministic manner.
/// Similarly, out-of-order data is supported out of the box.
///
/// The garbage collector doesn't deallocate data in and of itself: all it does is drop the
/// store's internal references to that data (the `Chunk`s), which will be deallocated once
/// their reference count reaches 0.
///
/// ## Limitations
///
/// The garbage collector has limited support for latest-at semantics. The configuration option:
/// [`GarbageCollectionOptions::protect_latest`] will protect the N latest values of each
/// component on each timeline. The only practical guarantee this gives is that a latest-at query
/// with a value of max-int will be unchanged. However, latest-at queries from other arbitrary
/// points in time may provide different results pre- and post- GC.
pub fn gc(
&mut self,
options: &GarbageCollectionOptions,
) -> (Vec<ChunkStoreEvent>, ChunkStoreStats) {
re_tracing::profile_function!();
self.gc_id += 1;
let stats_before = self.stats();
let total_size_bytes_before = stats_before.total().total_size_bytes as f64;
let total_num_chunks_before = stats_before.total().num_chunks;
let total_num_rows_before = stats_before.total().num_rows;
let protected_chunk_ids = self.find_all_protected_chunk_ids(options.protect_latest);
let diffs = match options.target {
GarbageCollectionTarget::DropAtLeastFraction(p) => {
assert!((0.0..=1.0).contains(&p));
let num_bytes_to_drop = total_size_bytes_before * p;
let target_size_bytes = total_size_bytes_before - num_bytes_to_drop;
re_log::trace!(
kind = "gc",
id = self.gc_id,
%options.target,
total_num_chunks_before = re_format::format_uint(total_num_chunks_before),
total_num_rows_before = re_format::format_uint(total_num_rows_before),
total_size_bytes_before = re_format::format_bytes(total_size_bytes_before),
target_size_bytes = re_format::format_bytes(target_size_bytes),
drop_at_least_num_bytes = re_format::format_bytes(num_bytes_to_drop),
"starting GC"
);
self.gc_drop_at_least_num_bytes(options, num_bytes_to_drop, &protected_chunk_ids)
}
GarbageCollectionTarget::Everything => {
re_log::trace!(
kind = "gc",
id = self.gc_id,
%options.target,
total_num_rows_before = re_format::format_uint(total_num_rows_before),
total_size_bytes_before = re_format::format_bytes(total_size_bytes_before),
"starting GC"
);
self.gc_drop_at_least_num_bytes(options, f64::INFINITY, &protected_chunk_ids)
}
};
let stats_after = self.stats();
let total_size_bytes_after = stats_after.total().total_size_bytes as f64;
let total_num_chunks_after = stats_after.total().num_chunks;
let total_num_rows_after = stats_after.total().num_rows;
re_log::trace!(
kind = "gc",
id = self.gc_id,
%options.target,
total_num_chunks_before = re_format::format_uint(total_num_chunks_before),
total_num_rows_before = re_format::format_uint(total_num_rows_before),
total_size_bytes_before = re_format::format_bytes(total_size_bytes_before),
total_num_chunks_after = re_format::format_uint(total_num_chunks_after),
total_num_rows_after = re_format::format_uint(total_num_rows_after),
total_size_bytes_after = re_format::format_bytes(total_size_bytes_after),
"GC done"
);
let events = if self.config.enable_changelog {
let events: Vec<_> = diffs
.into_iter()
.map(|diff| ChunkStoreEvent {
store_id: self.id.clone(),
store_generation: self.generation(),
event_id: self
.event_id
.fetch_add(1, std::sync::atomic::Ordering::Relaxed),
diff,
})
.collect();
{
if cfg!(debug_assertions) {
let any_event_other_than_deletion = events
.iter()
.any(|e| e.kind != ChunkStoreDiffKind::Deletion);
assert!(!any_event_other_than_deletion);
}
Self::on_events(&events);
}
events
} else {
Vec::new()
};
(events, stats_before - stats_after)
}
/// For each `EntityPath`, `Timeline`, `Component` find the N latest [`ChunkId`]s.
//
// TODO(jleibs): More complex functionality might required expanding this to also
// *ignore* specific entities, components, timelines, etc. for this protection.
fn find_all_protected_chunk_ids(&self, target_count: usize) -> BTreeSet<ChunkId> {
re_tracing::profile_function!();
if target_count == 0 {
return Default::default();
}
self.temporal_chunk_ids_per_entity_per_component
.values()
.flat_map(|temporal_chunk_ids_per_timeline| {
temporal_chunk_ids_per_timeline.iter().flat_map(
|(_timeline, temporal_chunk_ids_per_component)| {
temporal_chunk_ids_per_component.iter().flat_map(
|(_, temporal_chunk_ids_per_time)| {
temporal_chunk_ids_per_time
.per_start_time
.last_key_value()
.map(|(_, chunk_ids)| chunk_ids.iter().copied())
.into_iter()
.flatten()
.chain(
temporal_chunk_ids_per_time
.per_end_time
.last_key_value()
.map(|(_, chunk_ids)| chunk_ids.iter().copied())
.into_iter()
.flatten(),
)
.collect::<BTreeSet<_>>()
.into_iter()
.rev()
.take(target_count)
},
)
},
)
})
.collect()
}
fn gc_drop_at_least_num_bytes(
&mut self,
options: &GarbageCollectionOptions,
mut num_bytes_to_drop: f64,
protected_chunk_ids: &BTreeSet<ChunkId>,
) -> Vec<ChunkStoreDiff> {
re_tracing::profile_function!(re_format::format_bytes(num_bytes_to_drop));
let mut chunk_ids_to_be_removed =
RemovableChunkIdPerTimePerComponentPerTimelinePerEntity::default();
let mut chunk_ids_dangling = HashSet::default();
let start_time = Instant::now();
{
re_tracing::profile_scope!("mark");
for chunk_id in self
.chunk_ids_per_min_row_id
.values()
.flatten()
.filter(|chunk_id| !protected_chunk_ids.contains(chunk_id))
{
if let Some(chunk) = self.chunks_per_chunk_id.get(chunk_id) {
if options.is_chunk_protected(chunk) {
continue;
}
// NOTE: Do _NOT_ use `chunk.total_size_bytes` as it is sitting behind an Arc
// and would count as amortized (i.e. 0 bytes).
num_bytes_to_drop -= <Chunk as SizeBytes>::total_size_bytes(chunk) as f64;
// NOTE: We cannot blindly `retain` across all temporal tables, it's way too costly
// and slow. Rather we need to surgically remove the superfluous chunks.
let entity_path = chunk.entity_path();
let per_timeline = chunk_ids_to_be_removed
.entry(entity_path.clone())
.or_default();
for (&timeline, time_column) in chunk.timelines() {
let per_component = per_timeline.entry(timeline).or_default();
for component_name in chunk.component_names() {
let per_time = per_component.entry(component_name).or_default();
// NOTE: As usual, these are vectors of `ChunkId`s, as it is legal to
// have perfectly overlapping chunks.
let time_range = time_column.time_range();
per_time
.entry(time_range.min())
.or_default()
.push(chunk.id());
if time_range.min() != time_range.max() {
per_time
.entry(time_range.max())
.or_default()
.push(chunk.id());
}
}
}
} else {
chunk_ids_dangling.insert(*chunk_id);
}
// NOTE: There is no point in spending more than a fourth of the time budget on the
// mark phase or there is no way the sweep phase will have any time to do anything
// with the results anyhow.
if start_time.elapsed() >= options.time_budget / 4 || num_bytes_to_drop <= 0.0 {
break;
}
}
}
{
re_tracing::profile_scope!("sweep");
let Self {
id: _,
info: _,
config: _,
type_registry: _,
per_column_metadata: _, // column metadata is additive only
chunks_per_chunk_id,
chunk_ids_per_min_row_id,
temporal_chunk_ids_per_entity_per_component,
temporal_chunk_ids_per_entity,
temporal_chunks_stats: _,
static_chunk_ids_per_entity: _, // we don't GC static data
static_chunks_stats: _, // we don't GC static data
insert_id: _,
query_id: _,
gc_id: _,
event_id: _,
} = self;
let mut diffs = Vec::new();
// NOTE: Dangling chunks should never happen: it is the job of the GC to ensure that.
//
// In release builds, we still want to do the nice thing and clean them up as best as we
// can in order to prevent OOMs.
//
// We should really never be in there, so don't bother accounting that in the time
// budget.
debug_assert!(
chunk_ids_dangling.is_empty(),
"detected dangling chunks -- there's a GC bug"
);
if !chunk_ids_dangling.is_empty() {
re_tracing::profile_scope!("dangling");
chunk_ids_per_min_row_id.retain(|_row_id, chunk_ids| {
chunk_ids.retain(|chunk_id| !chunk_ids_dangling.contains(chunk_id));
!chunk_ids.is_empty()
});
// Component-less indices
for temporal_chunk_ids_per_timeline in temporal_chunk_ids_per_entity.values_mut() {
for temporal_chunk_ids_per_time in temporal_chunk_ids_per_timeline.values_mut()
{
let ChunkIdSetPerTime {
max_interval_length: _,
per_start_time,
per_end_time,
} = temporal_chunk_ids_per_time;
// TODO(cmc): Technically, the optimal thing to do would be to
// recompute `max_interval_length` per time here.
// In practice, this adds a lot of complexity for likely very little
// performance benefit, since we expect the chunks to have similar
// interval lengths on the happy path.
for chunk_ids in per_start_time.values_mut() {
chunk_ids.retain(|chunk_id| !chunk_ids_dangling.contains(chunk_id));
}
for chunk_ids in per_end_time.values_mut() {
chunk_ids.retain(|chunk_id| !chunk_ids_dangling.contains(chunk_id));
}
}
}
// Per-component indices
for temporal_chunk_ids_per_component in
temporal_chunk_ids_per_entity_per_component.values_mut()
{
for temporal_chunk_ids_per_timeline in
temporal_chunk_ids_per_component.values_mut()
{
for temporal_chunk_ids_per_time in
temporal_chunk_ids_per_timeline.values_mut()
{
let ChunkIdSetPerTime {
max_interval_length: _,
per_start_time,
per_end_time,
} = temporal_chunk_ids_per_time;
// TODO(cmc): Technically, the optimal thing to do would be to
// recompute `max_interval_length` per time here.
// In practice, this adds a lot of complexity for likely very little
// performance benefit, since we expect the chunks to have similar
// interval lengths on the happy path.
for chunk_ids in per_start_time.values_mut() {
chunk_ids.retain(|chunk_id| !chunk_ids_dangling.contains(chunk_id));
}
for chunk_ids in per_end_time.values_mut() {
chunk_ids.retain(|chunk_id| !chunk_ids_dangling.contains(chunk_id));
}
}
}
}
diffs.extend(
chunk_ids_dangling
.into_iter()
.filter_map(|chunk_id| chunks_per_chunk_id.remove(&chunk_id))
.map(ChunkStoreDiff::deletion),
);
}
if !chunk_ids_to_be_removed.is_empty() {
diffs.extend(self.remove_chunks(
chunk_ids_to_be_removed,
Some((start_time, options.time_budget)),
));
}
diffs
}
}
/// Surgically removes a _temporal_ [`ChunkId`] from all indices.
///
/// This is orders of magnitude faster than trying to `retain()` on all our internal indices.
///
/// See also [`ChunkStore::remove_chunks`].
pub(crate) fn remove_chunk(&mut self, chunk_id: ChunkId) -> Vec<ChunkStoreDiff> {
let Some(chunk) = self.chunks_per_chunk_id.get(&chunk_id) else {
return Vec::new();
};
let mut chunk_ids_to_be_removed =
RemovableChunkIdPerTimePerComponentPerTimelinePerEntity::default();
{
let chunk_ids_to_be_removed = chunk_ids_to_be_removed
.entry(chunk.entity_path().clone())
.or_default();
for (timeline, time_range_per_component) in chunk.time_range_per_component() {
let chunk_ids_to_be_removed = chunk_ids_to_be_removed.entry(timeline).or_default();
for (component_name, per_desc) in time_range_per_component {
for (_component_desc, time_range) in per_desc {
let chunk_ids_to_be_removed =
chunk_ids_to_be_removed.entry(component_name).or_default();
chunk_ids_to_be_removed
.entry(time_range.min())
.or_default()
.push(chunk.id());
chunk_ids_to_be_removed
.entry(time_range.max())
.or_default()
.push(chunk.id());
}
}
}
}
self.remove_chunks(chunk_ids_to_be_removed, None)
}
/// Surgically removes a set of _temporal_ [`ChunkId`]s from all indices.
///
/// This is orders of magnitude faster than trying to `retain()` on all our internal indices,
/// when you already know where these chunks live.
///
/// See also [`ChunkStore::remove_chunk`].
pub(crate) fn remove_chunks(
&mut self,
chunk_ids_to_be_removed: RemovableChunkIdPerTimePerComponentPerTimelinePerEntity,
time_budget: Option<(Instant, Duration)>,
) -> Vec<ChunkStoreDiff> {
re_tracing::profile_function!();
// NOTE: We cannot blindly `retain` across all temporal tables, it's way too costly
// and slow. Rather we need to surgically remove the superfluous chunks.
let mut chunk_ids_removed = HashSet::default();
// Because we have both a per-component and a component-less index that refer to the same
// chunks, we must make sure that they get garbage collected in sync.
// That implies making sure that we don't run out of time budget after we've GC'd one but
// before we had time to clean the other.
for (entity_path, chunk_ids_to_be_removed) in chunk_ids_to_be_removed {
let HashMapEntry::Occupied(mut temporal_chunk_ids_per_timeline) = self
.temporal_chunk_ids_per_entity_per_component
.entry(entity_path.clone())
else {
continue;
};
let HashMapEntry::Occupied(mut temporal_chunk_ids_per_timeline_componentless) =
self.temporal_chunk_ids_per_entity.entry(entity_path)
else {
continue;
};
for (timeline, chunk_ids_to_be_removed) in chunk_ids_to_be_removed {
// Component-less indices
{
let HashMapEntry::Occupied(mut temporal_chunk_ids_per_time_componentless) =
temporal_chunk_ids_per_timeline_componentless
.get_mut()
.entry(timeline)
else {
continue;
};
let ChunkIdSetPerTime {
max_interval_length: _,
per_start_time,
per_end_time,
} = temporal_chunk_ids_per_time_componentless.get_mut();
// TODO(cmc): Technically, the optimal thing to do would be to
// recompute `max_interval_length` per time here.
// In practice, this adds a lot of complexity for likely very little
// performance benefit, since we expect the chunks to have similar
// interval lengths on the happy path.
for chunk_ids_to_be_removed in chunk_ids_to_be_removed.values() {
for (&time, chunk_ids) in chunk_ids_to_be_removed {
if let BTreeMapEntry::Occupied(mut chunk_id_set) =
per_start_time.entry(time)
{
for chunk_id in chunk_ids {
chunk_id_set.get_mut().remove(chunk_id);
}
if chunk_id_set.get().is_empty() {
chunk_id_set.remove_entry();
}
}
if let BTreeMapEntry::Occupied(mut chunk_id_set) =
per_end_time.entry(time)
{
for chunk_id in chunk_ids {
chunk_id_set.get_mut().remove(chunk_id);
}
if chunk_id_set.get().is_empty() {
chunk_id_set.remove_entry();
}
}
chunk_ids_removed.extend(chunk_ids);
}
if let Some((start_time, time_budget)) = time_budget {
if start_time.elapsed() >= time_budget {
break;
}
}
}
if per_start_time.is_empty() && per_end_time.is_empty() {
temporal_chunk_ids_per_time_componentless.remove_entry();
}
}
// Per-component indices
//
// NOTE: This must go all the way, no matter the time budget left. Otherwise the
// component-less and per-component indices would go out of sync.
let HashMapEntry::Occupied(mut temporal_chunk_ids_per_component) =
temporal_chunk_ids_per_timeline.get_mut().entry(timeline)
else {
continue;
};
for (component_name, chunk_ids_to_be_removed) in chunk_ids_to_be_removed {
let HashMapEntry::Occupied(mut temporal_chunk_ids_per_time) =
temporal_chunk_ids_per_component
.get_mut()
.entry(component_name)
else {
continue;
};
let ChunkIdSetPerTime {
max_interval_length: _,
per_start_time,
per_end_time,
} = temporal_chunk_ids_per_time.get_mut();
// TODO(cmc): Technically, the optimal thing to do would be to
// recompute `max_interval_length` per time here.
// In practice, this adds a lot of complexity for likely very little
// performance benefit, since we expect the chunks to have similar
// interval lengths on the happy path.
for (time, chunk_ids) in chunk_ids_to_be_removed {
if let BTreeMapEntry::Occupied(mut chunk_id_set) =
per_start_time.entry(time)
{
for chunk_id in chunk_ids
.iter()
.filter(|chunk_id| chunk_ids_removed.contains(*chunk_id))
{
chunk_id_set.get_mut().remove(chunk_id);
}
if chunk_id_set.get().is_empty() {
chunk_id_set.remove_entry();
}
}
if let BTreeMapEntry::Occupied(mut chunk_id_set) = per_end_time.entry(time)
{
for chunk_id in chunk_ids
.iter()
.filter(|chunk_id| chunk_ids_removed.contains(*chunk_id))
{
chunk_id_set.get_mut().remove(chunk_id);
}
if chunk_id_set.get().is_empty() {
chunk_id_set.remove_entry();
}
}
}
if per_start_time.is_empty() && per_end_time.is_empty() {
temporal_chunk_ids_per_time.remove_entry();
}
}
if temporal_chunk_ids_per_component.get().is_empty() {
temporal_chunk_ids_per_component.remove_entry();
}
}
if temporal_chunk_ids_per_timeline.get().is_empty() {
temporal_chunk_ids_per_timeline.remove_entry();
}
if temporal_chunk_ids_per_timeline_componentless
.get()
.is_empty()
{
temporal_chunk_ids_per_timeline_componentless.remove_entry();
}
}
self.chunk_ids_per_min_row_id.retain(|_row_id, chunk_ids| {
chunk_ids.retain(|chunk_id| !chunk_ids_removed.contains(chunk_id));
!chunk_ids.is_empty()
});
chunk_ids_removed
.into_iter()
.filter_map(|chunk_id| self.chunks_per_chunk_id.remove(&chunk_id))
.inspect(|chunk| {
self.temporal_chunks_stats -= ChunkStoreChunkStats::from_chunk(chunk);
})
.map(ChunkStoreDiff::deletion)
.collect()
}
}