1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
use std::{
collections::BTreeSet,
sync::{atomic::Ordering, Arc},
};
use itertools::Itertools;
use re_chunk::{Chunk, LatestAtQuery, RangeQuery};
use re_log_types::ResolvedTimeRange;
use re_log_types::{EntityPath, TimeInt, Timeline};
use re_types_core::{ComponentName, ComponentNameSet};
use crate::{store::ChunkIdSetPerTime, ChunkStore};
// Used all over in docstrings.
#[allow(unused_imports)]
use crate::RowId;
// ---
// These APIs often have `temporal` and `static` variants.
// It is sometimes useful to be able to separately query either,
// such as when we want to tell the user that they logged a component
// as both static and temporal, which is probably wrong.
impl ChunkStore {
/// Retrieve all [`Timeline`]s in the store.
pub fn all_timelines(&self) -> BTreeSet<Timeline> {
self.temporal_chunk_ids_per_entity
.values()
.flat_map(|per_timeline| per_timeline.keys().copied())
.collect()
}
/// Retrieve all [`EntityPath`]s in the store.
pub fn all_entities(&self) -> BTreeSet<EntityPath> {
self.static_chunk_ids_per_entity
.keys()
.cloned()
.chain(self.temporal_chunk_ids_per_entity.keys().cloned())
.collect()
}
/// Retrieve all [`ComponentName`]s in the store.
pub fn all_components(&self) -> BTreeSet<ComponentName> {
self.static_chunk_ids_per_entity
.values()
.flat_map(|static_chunks_per_component| static_chunks_per_component.keys())
.chain(
self.temporal_chunk_ids_per_entity_per_component
.values()
.flat_map(|temporal_chunk_ids_per_timeline| {
temporal_chunk_ids_per_timeline.values().flat_map(
|temporal_chunk_ids_per_component| {
temporal_chunk_ids_per_component.keys()
},
)
}),
)
.copied()
.collect()
}
/// Retrieve all the [`ComponentName`]s that have been written to for a given [`EntityPath`] on
/// the specified [`Timeline`].
///
/// Static components are always included in the results.
///
/// Returns `None` if the entity doesn't exist at all on this `timeline`.
pub fn all_components_on_timeline(
&self,
timeline: &Timeline,
entity_path: &EntityPath,
) -> Option<ComponentNameSet> {
re_tracing::profile_function!();
self.query_id.fetch_add(1, Ordering::Relaxed);
let static_components: Option<ComponentNameSet> = self
.static_chunk_ids_per_entity
.get(entity_path)
.map(|static_chunks_per_component| {
static_chunks_per_component.keys().copied().collect()
});
let temporal_components: Option<ComponentNameSet> = self
.temporal_chunk_ids_per_entity_per_component
.get(entity_path)
.map(|temporal_chunk_ids_per_timeline| {
temporal_chunk_ids_per_timeline
.iter()
.filter(|(cur_timeline, _)| *cur_timeline == timeline)
.flat_map(|(_, temporal_chunk_ids_per_component)| {
temporal_chunk_ids_per_component.keys().copied()
})
.collect()
});
match (static_components, temporal_components) {
(None, None) => None,
(None, comps @ Some(_)) | (comps @ Some(_), None) => comps,
(Some(static_comps), Some(temporal_comps)) => {
Some(static_comps.into_iter().chain(temporal_comps).collect())
}
}
}
/// Retrieve all the [`ComponentName`]s that have been written to for a given [`EntityPath`].
///
/// Static components are always included in the results.
///
/// Returns `None` if the entity has never had any data logged to it.
pub fn all_components_for_entity(&self, entity_path: &EntityPath) -> Option<ComponentNameSet> {
re_tracing::profile_function!();
self.query_id.fetch_add(1, Ordering::Relaxed);
let static_components: Option<ComponentNameSet> = self
.static_chunk_ids_per_entity
.get(entity_path)
.map(|static_chunks_per_component| {
static_chunks_per_component.keys().copied().collect()
});
let temporal_components: Option<ComponentNameSet> = self
.temporal_chunk_ids_per_entity_per_component
.get(entity_path)
.map(|temporal_chunk_ids_per_timeline| {
temporal_chunk_ids_per_timeline
.iter()
.flat_map(|(_, temporal_chunk_ids_per_component)| {
temporal_chunk_ids_per_component.keys().copied()
})
.collect()
});
match (static_components, temporal_components) {
(None, None) => None,
(None, comps @ Some(_)) | (comps @ Some(_), None) => comps,
(Some(static_comps), Some(temporal_comps)) => {
Some(static_comps.into_iter().chain(temporal_comps).collect())
}
}
}
/// Check whether an entity has a static component or a temporal component on the specified timeline.
///
/// This does _not_ check if the entity actually currently holds any data for that component.
#[inline]
pub fn entity_has_component_on_timeline(
&self,
timeline: &Timeline,
entity_path: &EntityPath,
component_name: &ComponentName,
) -> bool {
// re_tracing::profile_function!(); // This function is too fast; profiling will only add overhead
self.entity_has_static_component(entity_path, component_name)
|| self.entity_has_temporal_component_on_timeline(timeline, entity_path, component_name)
}
/// Check whether an entity has a static component or a temporal component on any timeline.
///
/// This does _not_ check if the entity actually currently holds any data for that component.
pub fn entity_has_component(
&self,
entity_path: &EntityPath,
component_name: &ComponentName,
) -> bool {
// re_tracing::profile_function!(); // This function is too fast; profiling will only add overhead
self.entity_has_static_component(entity_path, component_name)
|| self.entity_has_temporal_component(entity_path, component_name)
}
/// Check whether an entity has a specific static component.
///
/// This does _not_ check if the entity actually currently holds any data for that component.
#[inline]
pub fn entity_has_static_component(
&self,
entity_path: &EntityPath,
component_name: &ComponentName,
) -> bool {
// re_tracing::profile_function!(); // This function is too fast; profiling will only add overhead
self.query_id.fetch_add(1, Ordering::Relaxed);
self.static_chunk_ids_per_entity
.get(entity_path)
.is_some_and(|static_chunk_ids_per_component| {
static_chunk_ids_per_component.contains_key(component_name)
})
}
/// Check whether an entity has a temporal component on any timeline.
///
/// This does _not_ check if the entity actually currently holds any data for that component.
#[inline]
pub fn entity_has_temporal_component(
&self,
entity_path: &EntityPath,
component_name: &ComponentName,
) -> bool {
// re_tracing::profile_function!(); // This function is too fast; profiling will only add overhead
self.query_id.fetch_add(1, Ordering::Relaxed);
self.temporal_chunk_ids_per_entity_per_component
.get(entity_path)
.iter()
.flat_map(|temporal_chunk_ids_per_timeline| temporal_chunk_ids_per_timeline.values())
.any(|temporal_chunk_ids_per_component| {
temporal_chunk_ids_per_component.contains_key(component_name)
})
}
/// Check whether an entity has a temporal component on a specific timeline.
///
/// This does _not_ check if the entity actually currently holds any data for that component.
#[inline]
pub fn entity_has_temporal_component_on_timeline(
&self,
timeline: &Timeline,
entity_path: &EntityPath,
component_name: &ComponentName,
) -> bool {
// re_tracing::profile_function!(); // This function is too fast; profiling will only add overhead
self.query_id.fetch_add(1, Ordering::Relaxed);
self.temporal_chunk_ids_per_entity_per_component
.get(entity_path)
.iter()
.filter_map(|temporal_chunk_ids_per_timeline| {
temporal_chunk_ids_per_timeline.get(timeline)
})
.any(|temporal_chunk_ids_per_component| {
temporal_chunk_ids_per_component.contains_key(component_name)
})
}
/// Check whether an entity has any data on a specific timeline, or any static data.
///
/// This is different from checking if the entity has any component, it also ensures
/// that some _data_ currently exists in the store for this entity.
#[inline]
pub fn entity_has_data_on_timeline(
&self,
timeline: &Timeline,
entity_path: &EntityPath,
) -> bool {
// re_tracing::profile_function!(); // This function is too fast; profiling will only add overhead
self.entity_has_static_data(entity_path)
|| self.entity_has_temporal_data_on_timeline(timeline, entity_path)
}
/// Check whether an entity has any static data or any temporal data on any timeline.
///
/// This is different from checking if the entity has any component, it also ensures
/// that some _data_ currently exists in the store for this entity.
#[inline]
pub fn entity_has_data(&self, entity_path: &EntityPath) -> bool {
// re_tracing::profile_function!(); // This function is too fast; profiling will only add overhead
self.entity_has_static_data(entity_path) || self.entity_has_temporal_data(entity_path)
}
/// Check whether an entity has any static data.
///
/// This is different from checking if the entity has any component, it also ensures
/// that some _data_ currently exists in the store for this entity.
#[inline]
pub fn entity_has_static_data(&self, entity_path: &EntityPath) -> bool {
// re_tracing::profile_function!(); // This function is too fast; profiling will only add overhead
self.query_id.fetch_add(1, Ordering::Relaxed);
self.static_chunk_ids_per_entity
.get(entity_path)
.is_some_and(|static_chunk_ids_per_component| {
static_chunk_ids_per_component
.values()
.any(|chunk_id| self.chunks_per_chunk_id.contains_key(chunk_id))
})
}
/// Check whether an entity has any temporal data.
///
/// This is different from checking if the entity has any component, it also ensures
/// that some _data_ currently exists in the store for this entity.
#[inline]
pub fn entity_has_temporal_data(&self, entity_path: &EntityPath) -> bool {
// re_tracing::profile_function!(); // This function is too fast; profiling will only add overhead
self.query_id.fetch_add(1, Ordering::Relaxed);
self.temporal_chunk_ids_per_entity_per_component
.get(entity_path)
.is_some_and(|temporal_chunks_per_timeline| {
temporal_chunks_per_timeline
.values()
.flat_map(|temporal_chunks_per_component| {
temporal_chunks_per_component.values()
})
.flat_map(|chunk_id_sets| chunk_id_sets.per_start_time.values())
.flat_map(|chunk_id_set| chunk_id_set.iter())
.any(|chunk_id| self.chunks_per_chunk_id.contains_key(chunk_id))
})
}
/// Check whether an entity has any temporal data.
///
/// This is different from checking if the entity has any component, it also ensures
/// that some _data_ currently exists in the store for this entity.
#[inline]
pub fn entity_has_temporal_data_on_timeline(
&self,
timeline: &Timeline,
entity_path: &EntityPath,
) -> bool {
// re_tracing::profile_function!(); // This function is too fast; profiling will only add overhead
self.query_id.fetch_add(1, Ordering::Relaxed);
self.temporal_chunk_ids_per_entity_per_component
.get(entity_path)
.and_then(|temporal_chunks_per_timeline| temporal_chunks_per_timeline.get(timeline))
.is_some_and(|temporal_chunks_per_component| {
temporal_chunks_per_component
.values()
.flat_map(|chunk_id_sets| chunk_id_sets.per_start_time.values())
.flat_map(|chunk_id_set| chunk_id_set.iter())
.any(|chunk_id| self.chunks_per_chunk_id.contains_key(chunk_id))
})
}
/// Find the earliest time at which something was logged for a given entity on the specified
/// timeline.
///
/// Ignores static data.
#[inline]
pub fn entity_min_time(
&self,
timeline: &Timeline,
entity_path: &EntityPath,
) -> Option<TimeInt> {
let temporal_chunk_ids_per_timeline = self
.temporal_chunk_ids_per_entity_per_component
.get(entity_path)?;
let temporal_chunk_ids_per_component = temporal_chunk_ids_per_timeline.get(timeline)?;
let mut time_min = TimeInt::MAX;
for temporal_chunk_ids_per_time in temporal_chunk_ids_per_component.values() {
let Some(time) = temporal_chunk_ids_per_time
.per_start_time
.first_key_value()
.map(|(time, _)| *time)
else {
continue;
};
time_min = TimeInt::min(time_min, time);
}
(time_min != TimeInt::MAX).then_some(time_min)
}
/// Returns the min and max times at which data was logged for an entity on a specific timeline.
///
/// This ignores static data.
pub fn entity_time_range(
&self,
timeline: &Timeline,
entity_path: &EntityPath,
) -> Option<ResolvedTimeRange> {
re_tracing::profile_function!();
self.query_id.fetch_add(1, Ordering::Relaxed);
let temporal_chunk_ids_per_timeline =
self.temporal_chunk_ids_per_entity.get(entity_path)?;
let chunk_id_sets = temporal_chunk_ids_per_timeline.get(timeline)?;
let start = chunk_id_sets.per_start_time.first_key_value()?.0;
let end = chunk_id_sets.per_end_time.last_key_value()?.0;
Some(ResolvedTimeRange::new(*start, *end))
}
/// Returns the min and max times at which data was logged on a specific timeline, considering
/// all entities.
///
/// This ignores static data.
pub fn time_range(&self, timeline: &Timeline) -> Option<ResolvedTimeRange> {
re_tracing::profile_function!();
self.query_id.fetch_add(1, Ordering::Relaxed);
self.temporal_chunk_ids_per_entity
.values()
.filter_map(|temporal_chunk_ids_per_timeline| {
let per_time = temporal_chunk_ids_per_timeline.get(timeline)?;
let start = per_time.per_start_time.first_key_value()?.0;
let end = per_time.per_end_time.last_key_value()?.0;
Some(ResolvedTimeRange::new(*start, *end))
})
.reduce(|r1, r2| r1.union(r2))
}
}
// LatestAt
impl ChunkStore {
/// Returns the most-relevant chunk(s) for the given [`LatestAtQuery`] and [`ComponentName`].
///
/// The returned vector is guaranteed free of duplicates, by definition.
///
/// The [`ChunkStore`] always work at the [`Chunk`] level (as opposed to the row level): it is
/// oblivious to the data therein.
/// For that reason, and because [`Chunk`]s are allowed to temporally overlap, it is possible
/// that a query has more than one relevant chunk.
///
/// The caller should filter the returned chunks further (see [`Chunk::latest_at`]) in order to
/// determine what exact row contains the final result.
///
/// If the entity has static component data associated with it, it will unconditionally
/// override any temporal component data.
pub fn latest_at_relevant_chunks(
&self,
query: &LatestAtQuery,
entity_path: &EntityPath,
component_name: ComponentName,
) -> Vec<Arc<Chunk>> {
// Don't do a profile scope here, this can have a lot of overhead when executing many small queries.
//re_tracing::profile_function!(format!("{query:?}"));
// Reminder: if a chunk has been indexed for a given component, then it must contain at
// least one non-null value for that column.
if let Some(static_chunk) = self
.static_chunk_ids_per_entity
.get(entity_path)
.and_then(|static_chunks_per_component| {
static_chunks_per_component.get(&component_name)
})
.and_then(|chunk_id| self.chunks_per_chunk_id.get(chunk_id))
{
return vec![Arc::clone(static_chunk)];
}
let chunks = self
.temporal_chunk_ids_per_entity_per_component
.get(entity_path)
.and_then(|temporal_chunk_ids_per_timeline| {
temporal_chunk_ids_per_timeline.get(&query.timeline())
})
.and_then(|temporal_chunk_ids_per_component| {
temporal_chunk_ids_per_component.get(&component_name)
})
.and_then(|temporal_chunk_ids_per_time| {
self.latest_at(query, temporal_chunk_ids_per_time)
})
.unwrap_or_default();
debug_assert!(chunks.iter().map(|chunk| chunk.id()).all_unique());
chunks
}
/// Returns the most-relevant _temporal_ chunk(s) for the given [`LatestAtQuery`].
///
/// The returned vector is guaranteed free of duplicates, by definition.
///
/// The [`ChunkStore`] always work at the [`Chunk`] level (as opposed to the row level): it is
/// oblivious to the data therein.
/// For that reason, and because [`Chunk`]s are allowed to temporally overlap, it is possible
/// that a query has more than one relevant chunk.
///
/// The caller should filter the returned chunks further (see [`Chunk::latest_at`]) in order to
/// determine what exact row contains the final result.
///
/// **This ignores static data.**
pub fn latest_at_relevant_chunks_for_all_components(
&self,
query: &LatestAtQuery,
entity_path: &EntityPath,
) -> Vec<Arc<Chunk>> {
re_tracing::profile_function!(format!("{query:?}"));
self.query_id.fetch_add(1, Ordering::Relaxed);
let chunks = self
.temporal_chunk_ids_per_entity
.get(entity_path)
.and_then(|temporal_chunk_ids_per_timeline| {
temporal_chunk_ids_per_timeline.get(&query.timeline())
})
.and_then(|temporal_chunk_ids_per_time| {
self.latest_at(query, temporal_chunk_ids_per_time)
})
.unwrap_or_default();
debug_assert!(chunks.iter().map(|chunk| chunk.id()).all_unique());
chunks
}
fn latest_at(
&self,
query: &LatestAtQuery,
temporal_chunk_ids_per_time: &ChunkIdSetPerTime,
) -> Option<Vec<Arc<Chunk>>> {
// Don't do a profile scope here, this can have a lot of overhead when executing many small queries.
//re_tracing::profile_function!();
let upper_bound = temporal_chunk_ids_per_time
.per_start_time
.range(..=query.at())
.next_back()
.map(|(time, _)| *time)?;
// Overlapped chunks
// =================
//
// To deal with potentially overlapping chunks, we keep track of the longest
// interval in the entire map, which gives us an upper bound on how much we
// would need to walk backwards in order to find all potential overlaps.
//
// This is a fairly simple solution that scales much better than interval-tree
// based alternatives, both in terms of complexity and performance, in the normal
// case where most chunks in a collection have similar lengths.
//
// The most degenerate case -- a single chunk overlaps everything else -- results
// in `O(n)` performance, which gets amortized by the query cache.
// If that turns out to be a problem in practice, we can experiment with more
// complex solutions then.
let lower_bound = upper_bound
.as_i64()
.saturating_sub(temporal_chunk_ids_per_time.max_interval_length as _);
let temporal_chunk_ids = temporal_chunk_ids_per_time
.per_start_time
.range(..=query.at())
.rev()
.take_while(|(time, _)| time.as_i64() >= lower_bound)
.flat_map(|(_time, chunk_ids)| chunk_ids.iter())
.copied()
.collect::<BTreeSet<_>>();
Some(
temporal_chunk_ids
.iter()
.filter_map(|chunk_id| self.chunks_per_chunk_id.get(chunk_id).cloned())
.collect(),
)
}
}
// Range
impl ChunkStore {
/// Returns the most-relevant chunk(s) for the given [`RangeQuery`] and [`ComponentName`].
///
/// The returned vector is guaranteed free of duplicates, by definition.
///
/// The criteria for returning a chunk is only that it may contain data that overlaps with
/// the queried range.
///
/// The caller should filter the returned chunks further (see [`Chunk::range`]) in order to
/// determine how exactly each row of data fit with the rest.
///
/// If the entity has static component data associated with it, it will unconditionally
/// override any temporal component data.
pub fn range_relevant_chunks(
&self,
query: &RangeQuery,
entity_path: &EntityPath,
component_name: ComponentName,
) -> Vec<Arc<Chunk>> {
re_tracing::profile_function!(format!("{query:?}"));
self.query_id.fetch_add(1, Ordering::Relaxed);
if let Some(static_chunk) = self
.static_chunk_ids_per_entity
.get(entity_path)
.and_then(|static_chunks_per_component| {
static_chunks_per_component.get(&component_name)
})
.and_then(|chunk_id| self.chunks_per_chunk_id.get(chunk_id))
{
return vec![Arc::clone(static_chunk)];
}
let chunks = self
.range(
query,
self.temporal_chunk_ids_per_entity_per_component
.get(entity_path)
.and_then(|temporal_chunk_ids_per_timeline| {
temporal_chunk_ids_per_timeline.get(&query.timeline())
})
.and_then(|temporal_chunk_ids_per_component| {
temporal_chunk_ids_per_component.get(&component_name)
})
.into_iter(),
)
.into_iter()
// Post-processing: `Self::range` doesn't have access to the chunk metadata, so now we
// need to make sure that the resulting chunks' per-component time range intersects with the
// time range of the query itself.
.filter(|chunk| {
chunk
.timelines()
.get(&query.timeline())
.map_or(false, |time_column| {
time_column
.time_range_per_component(chunk.components())
.get(&component_name)
.map_or(false, |time_range| time_range.intersects(query.range()))
})
})
.collect_vec();
debug_assert!(chunks.iter().map(|chunk| chunk.id()).all_unique());
chunks
}
/// Returns the most-relevant _temporal_ chunk(s) for the given [`RangeQuery`].
///
/// The returned vector is guaranteed free of duplicates, by definition.
///
/// The criteria for returning a chunk is only that it may contain data that overlaps with
/// the queried range.
///
/// The caller should filter the returned chunks further (see [`Chunk::range`]) in order to
/// determine how exactly each row of data fit with the rest.
///
/// **This ignores static data.**
pub fn range_relevant_chunks_for_all_components(
&self,
query: &RangeQuery,
entity_path: &EntityPath,
) -> Vec<Arc<Chunk>> {
re_tracing::profile_function!(format!("{query:?}"));
self.query_id.fetch_add(1, Ordering::Relaxed);
let chunks = self
.range(
query,
self.temporal_chunk_ids_per_entity
.get(entity_path)
.and_then(|temporal_chunk_ids_per_timeline| {
temporal_chunk_ids_per_timeline.get(&query.timeline())
})
.into_iter(),
)
.into_iter()
// Post-processing: `Self::range` doesn't have access to the chunk metadata, so now we
// need to make sure that the resulting chunks' global time ranges intersect with the
// time range of the query itself.
.filter(|chunk| {
chunk
.timelines()
.get(&query.timeline())
.map_or(false, |time_column| {
time_column.time_range().intersects(query.range())
})
})
.collect_vec();
debug_assert!(chunks.iter().map(|chunk| chunk.id()).all_unique());
chunks
}
fn range<'a>(
&'a self,
query: &RangeQuery,
temporal_chunk_ids_per_times: impl Iterator<Item = &'a ChunkIdSetPerTime>,
) -> Vec<Arc<Chunk>> {
re_tracing::profile_function!();
temporal_chunk_ids_per_times
.map(|temporal_chunk_ids_per_time| {
// See `RangeQueryOptions::include_extended_bounds` for more information.
let query_min = if query.options().include_extended_bounds {
re_log_types::TimeInt::new_temporal(
query.range.min().as_i64().saturating_sub(1),
)
} else {
query.range.min()
};
let query_max = if query.options().include_extended_bounds {
re_log_types::TimeInt::new_temporal(
query.range.max().as_i64().saturating_add(1),
)
} else {
query.range.max()
};
// Overlapped chunks
// =================
//
// To deal with potentially overlapping chunks, we keep track of the longest
// interval in the entire map, which gives us an upper bound on how much we
// would need to walk backwards in order to find all potential overlaps.
//
// This is a fairly simple solution that scales much better than interval-tree
// based alternatives, both in terms of complexity and performance, in the normal
// case where most chunks in a collection have similar lengths.
//
// The most degenerate case -- a single chunk overlaps everything else -- results
// in `O(n)` performance, which gets amortized by the query cache.
// If that turns out to be a problem in practice, we can experiment with more
// complex solutions then.
let query_min = TimeInt::new_temporal(
query_min
.as_i64()
.saturating_sub(temporal_chunk_ids_per_time.max_interval_length as _),
);
let start_time = temporal_chunk_ids_per_time
.per_start_time
.range(..=query_min)
.next_back()
.map_or(TimeInt::MIN, |(&time, _)| time);
let end_time = temporal_chunk_ids_per_time
.per_start_time
.range(..=query_max)
.next_back()
.map_or(start_time, |(&time, _)| time);
// NOTE: Just being extra cautious because, even though this shouldnt possibly ever happen,
// indexing a std map with a backwards range is an instant crash.
let end_time = TimeInt::max(start_time, end_time);
(start_time, end_time, temporal_chunk_ids_per_time)
})
.flat_map(|(start_time, end_time, temporal_chunk_ids_per_time)| {
temporal_chunk_ids_per_time
.per_start_time
.range(start_time..=end_time)
.map(|(_time, chunk_ids)| chunk_ids)
})
.flat_map(|temporal_chunk_ids| {
temporal_chunk_ids
.iter()
.filter_map(|chunk_id| self.chunks_per_chunk_id.get(chunk_id).cloned())
})
.collect()
}
}