1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
use std::{collections::BTreeSet, sync::Arc};
use ahash::HashMap;
use arrow::array::Array as _;
use itertools::Itertools as _;
use re_byte_size::SizeBytes;
use re_chunk::{Chunk, EntityPath, RowId};
use crate::{
store::ChunkIdSetPerTime, ChunkStore, ChunkStoreChunkStats, ChunkStoreConfig, ChunkStoreDiff,
ChunkStoreError, ChunkStoreEvent, ChunkStoreResult, ColumnMetadataState,
};
// Used all over in docstrings.
#[allow(unused_imports)]
use crate::ChunkId;
// ---
impl ChunkStore {
/// Inserts a [`Chunk`] in the store.
///
/// Iff the store was modified, all registered subscribers will be notified and the
/// resulting [`ChunkStoreEvent`] will be returned, or `None` otherwise.
///
/// * Trying to insert an unsorted chunk ([`Chunk::is_sorted`]) will fail with an error.
/// * Inserting a duplicated [`ChunkId`] will result in a no-op.
/// * Inserting an empty [`Chunk`] will result in a no-op.
pub fn insert_chunk(&mut self, chunk: &Arc<Chunk>) -> ChunkStoreResult<Vec<ChunkStoreEvent>> {
if self.chunks_per_chunk_id.contains_key(&chunk.id()) {
// We assume that chunk IDs are unique, and that reinserting a chunk has no effect.
re_log::debug_once!(
"Chunk #{} was inserted more than once (this has no effect)",
chunk.id()
);
return Ok(Vec::new());
}
if !chunk.is_sorted() {
return Err(ChunkStoreError::UnsortedChunk);
}
let Some(row_id_range) = chunk.row_id_range() else {
return Ok(Vec::new());
};
re_tracing::profile_function!();
self.insert_id += 1;
let mut chunk = Arc::clone(chunk);
// We're in a transition period during which the Rerun ecosystem is slowly moving over to tagged data.
//
// During that time, it is common to end up in situations where the blueprint intermixes both tagged
// and untagged components, which invariably leads to undefined behavior.
// To prevent that, we just always hot-patch it to untagged, for now.
//
// Examples:
// * An SDK logs a blueprint (tagged), which is then updated by the viewer (which uses untagged log calls).
// * Somebody loads an old .rbl from somewhere and starts logging new blueprint data to it.
// * Etc.
if self.id.kind == re_log_types::StoreKind::Blueprint {
let patched = chunk.patched_for_blueprint_021_compat();
chunk = Arc::new(patched);
}
#[cfg(debug_assertions)]
for (component_name, per_desc) in chunk.components().iter() {
assert!(
per_desc.len() <= 1,
"[DEBUG ONLY] Insert Chunk with multiple values for component named `{component_name}`: this is currently UB\n{chunk}",
);
}
let non_compacted_chunk = Arc::clone(&chunk); // we'll need it to create the store event
let (chunk, diffs) = if chunk.is_static() {
// Static data: make sure to keep the most recent chunk available for each component column.
re_tracing::profile_scope!("static");
let row_id_range_per_component = chunk.row_id_range_per_component();
let mut overwritten_chunk_ids = HashMap::default();
for (component_desc, list_array) in chunk.components().iter_flattened() {
let is_empty = list_array
.nulls()
.is_some_and(|validity| validity.is_empty());
if is_empty {
continue;
}
let Some((_row_id_min_for_component, row_id_max_for_component)) =
row_id_range_per_component
.get(&component_desc.component_name)
.and_then(|per_desc| per_desc.get(component_desc))
else {
continue;
};
self.static_chunk_ids_per_entity
.entry(chunk.entity_path().clone())
.or_default()
.entry(component_desc.component_name)
.and_modify(|cur_chunk_id| {
// NOTE: When attempting to overwrite static data, the chunk with the most
// recent data within -- according to RowId -- wins.
let cur_row_id_max_for_component = self
.chunks_per_chunk_id
.get(cur_chunk_id)
.map_or(RowId::ZERO, |chunk| {
chunk
.row_id_range_per_component()
.get(&component_desc.component_name)
.and_then(|per_desc| per_desc.get(component_desc))
.map_or(RowId::ZERO, |(_, row_id_max)| *row_id_max)
});
if *row_id_max_for_component > cur_row_id_max_for_component {
// We are about to overwrite the existing chunk with the new one, at
// least for this one specific component.
// Keep track of the overwritten ChunkId: we'll need it further down in
// order to check whether that chunk is now dangling.
// NOTE: The chunks themselves are indexed using the smallest RowId in
// the chunk _as a whole_, as opposed to the smallest RowId of one
// specific component in that chunk.
let cur_row_id_min_for_chunk = self
.chunks_per_chunk_id
.get(cur_chunk_id)
.and_then(|chunk| {
chunk.row_id_range().map(|(row_id_min, _)| row_id_min)
});
debug_assert!(
cur_row_id_min_for_chunk.is_some(),
"This condition cannot fail, we just want to avoid unwrapping",
);
if let Some(cur_row_id_min_for_chunk) = cur_row_id_min_for_chunk {
overwritten_chunk_ids
.insert(*cur_chunk_id, cur_row_id_min_for_chunk);
}
*cur_chunk_id = chunk.id();
}
})
.or_insert_with(|| chunk.id());
}
self.static_chunks_stats += ChunkStoreChunkStats::from_chunk(&chunk);
let mut diffs = vec![ChunkStoreDiff::addition(
non_compacted_chunk, /* added */
None, /* compacted */
)];
// NOTE: Our chunks can only cover a single entity path at a time, therefore we know we
// only have to check that one entity for complete overwrite.
debug_assert!(
self.static_chunk_ids_per_entity
.contains_key(chunk.entity_path()),
"This condition cannot fail, we just want to avoid unwrapping",
);
if let Some(per_component) = self.static_chunk_ids_per_entity.get(chunk.entity_path()) {
re_tracing::profile_scope!("static dangling checks");
// At this point, we are in possession of a list of ChunkIds that were at least
// _partially_ overwritten (i.e. some, but not necessarily all, of the components
// that they used to provide the data for are now provided by another, newer chunk).
//
// To determine whether any of these chunks are actually fully overwritten, and
// therefore dangling, we need to make sure there are no components left
// referencing these ChunkIds whatsoever.
//
// Because our storage model guarantees that a single chunk cannot cover more than
// one entity, this is actually pretty cheap to do, since we only have to loop over
// all the components of a single entity.
for (chunk_id, chunk_row_id_min) in overwritten_chunk_ids {
let has_been_fully_overwritten = !per_component
.values()
.any(|cur_chunk_id| *cur_chunk_id == chunk_id);
if has_been_fully_overwritten {
// The chunk is now dangling: remove it from all relevant indices, update
// the stats, and fire deletion events.
let chunk_id_removed =
self.chunk_ids_per_min_row_id.remove(&chunk_row_id_min);
debug_assert!(chunk_id_removed.is_some());
let chunk_removed = self.chunks_per_chunk_id.remove(&chunk_id);
debug_assert!(chunk_removed.is_some());
if let Some(chunk_removed) = chunk_removed {
self.static_chunks_stats -=
ChunkStoreChunkStats::from_chunk(&chunk_removed);
diffs.push(ChunkStoreDiff::deletion(chunk_removed));
}
}
}
}
(Arc::clone(&chunk), diffs)
} else {
// Temporal data: just index the chunk on every dimension of interest.
re_tracing::profile_scope!("temporal");
let (elected_chunk, chunk_or_compacted) = {
re_tracing::profile_scope!("election");
let elected_chunk = self.find_and_elect_compaction_candidate(&chunk);
let chunk_or_compacted = if let Some(elected_chunk) = &elected_chunk {
let chunk_rowid_min = chunk.row_id_range().map(|(min, _)| min);
let elected_rowid_min = elected_chunk.row_id_range().map(|(min, _)| min);
let mut compacted = if elected_rowid_min < chunk_rowid_min {
re_tracing::profile_scope!("concat");
elected_chunk.concatenated(&chunk)?
} else {
re_tracing::profile_scope!("concat");
chunk.concatenated(elected_chunk)?
};
{
re_tracing::profile_scope!("sort");
compacted.sort_if_unsorted();
}
re_log::trace!(
"compacted {} ({} rows) and {} ({} rows) together, resulting in {} ({} rows)",
chunk.id(),
re_format::format_uint(chunk.num_rows()),
elected_chunk.id(),
re_format::format_uint(elected_chunk.num_rows()),
compacted.id(),
re_format::format_uint(compacted.num_rows()),
);
Arc::new(compacted)
} else {
Arc::clone(&chunk)
};
(elected_chunk, chunk_or_compacted)
};
{
re_tracing::profile_scope!("insertion (w/ component)");
let temporal_chunk_ids_per_timeline = self
.temporal_chunk_ids_per_entity_per_component
.entry(chunk_or_compacted.entity_path().clone())
.or_default();
// NOTE: We must make sure to use the time range of each specific component column
// here, or we open ourselves to nasty edge cases.
//
// See the `latest_at_sparse_component_edge_case` test.
for (timeline, time_range_per_component) in
chunk_or_compacted.time_range_per_component()
{
let temporal_chunk_ids_per_component =
temporal_chunk_ids_per_timeline.entry(timeline).or_default();
for (component_name, per_desc) in time_range_per_component {
for (_component_desc, time_range) in per_desc {
let temporal_chunk_ids_per_time = temporal_chunk_ids_per_component
.entry(component_name)
.or_default();
// See `ChunkIdSetPerTime::max_interval_length`'s documentation.
temporal_chunk_ids_per_time.max_interval_length = u64::max(
temporal_chunk_ids_per_time.max_interval_length,
time_range.abs_length(),
);
temporal_chunk_ids_per_time
.per_start_time
.entry(time_range.min())
.or_default()
.insert(chunk_or_compacted.id());
temporal_chunk_ids_per_time
.per_end_time
.entry(time_range.max())
.or_default()
.insert(chunk_or_compacted.id());
}
}
}
}
{
re_tracing::profile_scope!("insertion (w/o component)");
let temporal_chunk_ids_per_timeline = self
.temporal_chunk_ids_per_entity
.entry(chunk_or_compacted.entity_path().clone())
.or_default();
for (timeline, time_column) in chunk_or_compacted.timelines() {
let temporal_chunk_ids_per_time = temporal_chunk_ids_per_timeline
.entry(*timeline)
.or_default();
let time_range = time_column.time_range();
// See `ChunkIdSetPerTime::max_interval_length`'s documentation.
temporal_chunk_ids_per_time.max_interval_length = u64::max(
temporal_chunk_ids_per_time.max_interval_length,
time_range.abs_length(),
);
temporal_chunk_ids_per_time
.per_start_time
.entry(time_range.min())
.or_default()
.insert(chunk_or_compacted.id());
temporal_chunk_ids_per_time
.per_end_time
.entry(time_range.max())
.or_default()
.insert(chunk_or_compacted.id());
}
}
self.temporal_chunks_stats += ChunkStoreChunkStats::from_chunk(&chunk_or_compacted);
let mut diff = ChunkStoreDiff::addition(
// NOTE: We are advertising only the non-compacted chunk as "added", i.e. only the new data.
//
// This makes sure that downstream subscribers only have to process what is new,
// instead of needlessly reprocessing old rows that would appear to have been
// removed and reinserted due to compaction.
//
// Subscribers will still be capable of tracking which chunks have been merged with which
// by using the compaction report that we fill below.
Arc::clone(&non_compacted_chunk), /* added */
None, /* compacted */
);
if let Some(elected_chunk) = &elected_chunk {
// NOTE: The chunk that we've just added has been compacted already!
let srcs = std::iter::once((non_compacted_chunk.id(), non_compacted_chunk))
.chain(
self.remove_chunk(elected_chunk.id())
.into_iter()
.filter(|diff| diff.kind == crate::ChunkStoreDiffKind::Deletion)
.map(|diff| (diff.chunk.id(), diff.chunk)),
)
.collect();
diff.compacted = Some(crate::ChunkCompactionReport {
srcs,
new_chunk: chunk_or_compacted.clone(),
});
}
(chunk_or_compacted, vec![diff])
};
self.chunks_per_chunk_id.insert(chunk.id(), chunk.clone());
self.chunk_ids_per_min_row_id
.entry(row_id_range.0)
.or_default()
.push(chunk.id());
for (component_descr, list_array) in chunk.components().iter_flattened() {
self.type_registry
.insert(component_descr.component_name, list_array.value_type());
let column_metadata_state = self
.per_column_metadata
.entry(chunk.entity_path().clone())
.or_default()
.entry(component_descr.component_name)
.or_default()
.entry(component_descr.clone())
.or_insert(ColumnMetadataState {
is_semantically_empty: true,
});
{
let is_semantically_empty =
re_arrow_util::arrow_util::is_list_array_semantically_empty(list_array);
column_metadata_state.is_semantically_empty &= is_semantically_empty;
}
}
let events = if self.config.enable_changelog {
let events: Vec<_> = diffs
.into_iter()
.map(|diff| ChunkStoreEvent {
store_id: self.id.clone(),
store_generation: self.generation(),
event_id: self
.event_id
.fetch_add(1, std::sync::atomic::Ordering::Relaxed),
diff,
})
.collect();
Self::on_events(&events);
events
} else {
Vec::new()
};
Ok(events)
}
/// Finds the most appropriate candidate for compaction.
///
/// The algorithm is simple: for each incoming [`Chunk`], we take a look at its future neighbors.
/// Each neighbor is a potential candidate for compaction.
///
/// Because the chunk is going to be inserted into many different indices -- for each of its timelines
/// and components -- it will have many direct neighbors.
/// Everytime we encounter a neighbor, it earns points.
///
/// The neighbor with the most points at the end of the process is elected.
fn find_and_elect_compaction_candidate(&self, chunk: &Arc<Chunk>) -> Option<Arc<Chunk>> {
re_tracing::profile_function!();
let mut candidates_below_threshold: HashMap<ChunkId, bool> = HashMap::default();
let mut check_if_chunk_below_threshold =
|store: &Self, candidate_chunk_id: ChunkId| -> bool {
let ChunkStoreConfig {
enable_changelog: _,
chunk_max_bytes,
chunk_max_rows,
chunk_max_rows_if_unsorted,
} = store.config;
*candidates_below_threshold
.entry(candidate_chunk_id)
.or_insert_with(|| {
store.chunks_per_chunk_id.get(&candidate_chunk_id).map_or(
false,
|candidate| {
if !chunk.concatenable(candidate) {
return false;
}
let total_bytes = <Chunk as SizeBytes>::total_size_bytes(chunk)
+ <Chunk as SizeBytes>::total_size_bytes(candidate);
let is_below_bytes_threshold = total_bytes <= chunk_max_bytes;
let total_rows = (chunk.num_rows() + candidate.num_rows()) as u64;
let is_below_rows_threshold = if candidate.is_time_sorted() {
total_rows <= chunk_max_rows
} else {
total_rows <= chunk_max_rows_if_unsorted
};
is_below_bytes_threshold && is_below_rows_threshold
},
)
})
};
let mut candidates: HashMap<ChunkId, u64> = HashMap::default();
let temporal_chunk_ids_per_timeline = self
.temporal_chunk_ids_per_entity_per_component
.get(chunk.entity_path())?;
for (timeline, time_range_per_component) in chunk.time_range_per_component() {
let Some(temporal_chunk_ids_per_component) =
temporal_chunk_ids_per_timeline.get(&timeline)
else {
continue;
};
for (component_name, per_desc) in time_range_per_component {
for (_component_desc, time_range) in per_desc {
let Some(temporal_chunk_ids_per_time) =
temporal_chunk_ids_per_component.get(&component_name)
else {
continue;
};
{
// Direct neighbors (before): 1 point each.
if let Some((_data_time, chunk_id_set)) = temporal_chunk_ids_per_time
.per_start_time
.range(..time_range.min())
.next_back()
{
for &chunk_id in chunk_id_set {
if check_if_chunk_below_threshold(self, chunk_id) {
*candidates.entry(chunk_id).or_default() += 1;
}
}
}
// Direct neighbors (after): 1 point each.
if let Some((_data_time, chunk_id_set)) = temporal_chunk_ids_per_time
.per_start_time
.range(time_range.max().inc()..)
.next()
{
for &chunk_id in chunk_id_set {
if check_if_chunk_below_threshold(self, chunk_id) {
*candidates.entry(chunk_id).or_default() += 1;
}
}
}
let chunk_id_set = temporal_chunk_ids_per_time
.per_start_time
.get(&time_range.min());
// Shared start times: 2 points each.
for chunk_id in chunk_id_set.iter().flat_map(|set| set.iter().copied()) {
if check_if_chunk_below_threshold(self, chunk_id) {
*candidates.entry(chunk_id).or_default() += 2;
}
}
}
}
}
}
debug_assert!(!candidates.contains_key(&chunk.id()));
let mut candidates = candidates.into_iter().collect_vec();
candidates.sort_by_key(|(_chunk_id, points)| *points);
candidates.reverse();
candidates
.into_iter()
.find_map(|(chunk_id, _points)| self.chunks_per_chunk_id.get(&chunk_id).map(Arc::clone))
}
/// Unconditionally drops all the data for a given `entity_path`.
///
/// Returns the list of `Chunk`s that were dropped from the store in the form of [`ChunkStoreEvent`]s.
///
/// This is _not_ recursive. The store is unaware of the entity hierarchy.
pub fn drop_entity_path(&mut self, entity_path: &EntityPath) -> Vec<ChunkStoreEvent> {
re_tracing::profile_function!(entity_path.to_string());
self.gc_id += 1; // close enough
let generation = self.generation();
let Self {
id,
info: _,
config: _,
type_registry: _,
per_column_metadata,
chunks_per_chunk_id,
chunk_ids_per_min_row_id,
temporal_chunk_ids_per_entity_per_component,
temporal_chunk_ids_per_entity,
temporal_chunks_stats,
static_chunk_ids_per_entity,
static_chunks_stats,
insert_id: _,
gc_id: _,
event_id,
} = self;
per_column_metadata.remove(entity_path);
let dropped_static_chunks = {
let dropped_static_chunk_ids: BTreeSet<_> = static_chunk_ids_per_entity
.remove(entity_path)
.unwrap_or_default()
.into_values()
.collect();
chunk_ids_per_min_row_id.retain(|_row_id, chunk_ids| {
chunk_ids.retain(|chunk_id| !dropped_static_chunk_ids.contains(chunk_id));
!chunk_ids.is_empty()
});
dropped_static_chunk_ids.into_iter()
};
let dropped_temporal_chunks = {
temporal_chunk_ids_per_entity_per_component.remove(entity_path);
let dropped_temporal_chunk_ids: BTreeSet<_> = temporal_chunk_ids_per_entity
.remove(entity_path)
.unwrap_or_default()
.into_values()
.flat_map(|temporal_chunk_ids_per_time| {
let ChunkIdSetPerTime {
max_interval_length: _,
per_start_time,
per_end_time: _, // same chunk IDs as above
} = temporal_chunk_ids_per_time;
per_start_time
.into_values()
.flat_map(|chunk_ids| chunk_ids.into_iter())
})
.collect();
chunk_ids_per_min_row_id.retain(|_row_id, chunk_ids| {
chunk_ids.retain(|chunk_id| !dropped_temporal_chunk_ids.contains(chunk_id));
!chunk_ids.is_empty()
});
dropped_temporal_chunk_ids.into_iter()
};
let dropped_static_chunks = dropped_static_chunks
.filter_map(|chunk_id| chunks_per_chunk_id.remove(&chunk_id))
.inspect(|chunk| {
*static_chunks_stats -= ChunkStoreChunkStats::from_chunk(chunk);
})
// NOTE: gotta collect to release the mut ref on `chunks_per_chunk_id`.
.collect_vec();
let dropped_temporal_chunks = dropped_temporal_chunks
.filter_map(|chunk_id| chunks_per_chunk_id.remove(&chunk_id))
.inspect(|chunk| {
*temporal_chunks_stats -= ChunkStoreChunkStats::from_chunk(chunk);
});
if self.config.enable_changelog {
let events: Vec<_> = dropped_static_chunks
.into_iter()
.chain(dropped_temporal_chunks)
.map(ChunkStoreDiff::deletion)
.map(|diff| ChunkStoreEvent {
store_id: id.clone(),
store_generation: generation.clone(),
event_id: event_id.fetch_add(1, std::sync::atomic::Ordering::Relaxed),
diff,
})
.collect();
Self::on_events(&events);
events
} else {
Vec::new()
}
}
}
#[cfg(test)]
mod tests {
use re_chunk::{TimePoint, Timeline};
use re_log_types::example_components::{MyColor, MyLabel, MyPoint};
use similar_asserts::assert_eq;
use crate::ChunkStoreDiffKind;
use super::*;
// TODO(cmc): We could have more test coverage here, especially regarding thresholds etc.
// For now the development and maintenance cost doesn't seem to be worth it.
// We can re-assess later if things turns out to be shaky in practice.
#[test]
fn compaction_simple() -> anyhow::Result<()> {
re_log::setup_logging();
let mut store = ChunkStore::new(
re_log_types::StoreId::random(re_log_types::StoreKind::Recording),
Default::default(),
);
let entity_path = EntityPath::from("this/that");
let row_id1 = RowId::new();
let row_id2 = RowId::new();
let row_id3 = RowId::new();
let row_id4 = RowId::new();
let row_id5 = RowId::new();
let row_id6 = RowId::new();
let row_id7 = RowId::new();
let row_id8 = RowId::new();
let row_id9 = RowId::new();
let row_id10 = RowId::new();
let timepoint1 = [(Timeline::new_sequence("frame"), 1)];
let timepoint2 = [(Timeline::new_sequence("frame"), 3)];
let timepoint3 = [(Timeline::new_sequence("frame"), 5)];
let timepoint4 = [(Timeline::new_sequence("frame"), 7)];
let timepoint5 = [(Timeline::new_sequence("frame"), 9)];
let points1 = &[MyPoint::new(1.0, 1.0)];
let points2 = &[MyPoint::new(2.0, 2.0)];
let points3 = &[MyPoint::new(3.0, 3.0)];
let points4 = &[MyPoint::new(4.0, 4.0)];
let points5 = &[MyPoint::new(5.0, 5.0)];
let chunk1 = Chunk::builder(entity_path.clone())
.with_component_batches(row_id1, timepoint1, [points1 as _])
.with_component_batches(row_id2, timepoint2, [points2 as _])
.with_component_batches(row_id3, timepoint3, [points3 as _])
.build()?;
let chunk2 = Chunk::builder(entity_path.clone())
.with_component_batches(row_id4, timepoint4, [points4 as _])
.with_component_batches(row_id5, timepoint5, [points5 as _])
.build()?;
let chunk3 = Chunk::builder(entity_path.clone())
.with_component_batches(row_id6, timepoint1, [points1 as _])
.with_component_batches(row_id7, timepoint2, [points2 as _])
.with_component_batches(row_id8, timepoint3, [points3 as _])
.build()?;
let chunk4 = Chunk::builder(entity_path.clone())
.with_component_batches(row_id9, timepoint4, [points4 as _])
.with_component_batches(row_id10, timepoint5, [points5 as _])
.build()?;
let chunk1 = Arc::new(chunk1);
let chunk2 = Arc::new(chunk2);
let chunk3 = Arc::new(chunk3);
let chunk4 = Arc::new(chunk4);
eprintln!("---\n{store}\ninserting {}", chunk1.id());
store.insert_chunk(&chunk1)?;
eprintln!("---\n{store}\ninserting {}", chunk2.id());
store.insert_chunk(&chunk2)?;
eprintln!("---\n{store}\ninserting {}", chunk3.id());
store.insert_chunk(&chunk3)?;
eprintln!("---\n{store}\ninserting {}", chunk4.id());
store.insert_chunk(&chunk4)?;
eprintln!("---\n{store}");
let got = store
.chunks_per_chunk_id
.first_key_value()
.map(|(_id, chunk)| chunk)
.unwrap();
let expected = Chunk::builder_with_id(got.id(), entity_path.clone())
.with_component_batches(row_id1, timepoint1, [points1 as _])
.with_component_batches(row_id2, timepoint2, [points2 as _])
.with_component_batches(row_id3, timepoint3, [points3 as _])
.with_component_batches(row_id4, timepoint4, [points4 as _])
.with_component_batches(row_id5, timepoint5, [points5 as _])
.with_component_batches(row_id6, timepoint1, [points1 as _])
.with_component_batches(row_id7, timepoint2, [points2 as _])
.with_component_batches(row_id8, timepoint3, [points3 as _])
.with_component_batches(row_id9, timepoint4, [points4 as _])
.with_component_batches(row_id10, timepoint5, [points5 as _])
.build()?;
assert_eq!(1, store.chunks_per_chunk_id.len());
assert_eq!(
expected,
**got,
"{}",
similar_asserts::SimpleDiff::from_str(
&format!("{expected}"),
&format!("{got}"),
"expected",
"got",
),
);
Ok(())
}
#[test]
fn static_overwrites() -> anyhow::Result<()> {
re_log::setup_logging();
let mut store = ChunkStore::new(
re_log_types::StoreId::random(re_log_types::StoreKind::Recording),
Default::default(),
);
let entity_path = EntityPath::from("this/that");
let row_id1_1 = RowId::new();
let row_id2_1 = RowId::new();
let row_id2_2 = RowId::new();
let timepoint_static = TimePoint::default();
let points1 = &[MyPoint::new(1.0, 1.0)];
let colors1 = &[MyColor::from_rgb(1, 1, 1)];
let labels1 = &[MyLabel("111".to_owned())];
let points2 = &[MyPoint::new(2.0, 2.0)];
let colors2 = &[MyColor::from_rgb(2, 2, 2)];
let labels2 = &[MyLabel("222".to_owned())];
let chunk1 = Chunk::builder(entity_path.clone())
.with_component_batches(
row_id1_1,
timepoint_static.clone(),
[points1 as _, colors1 as _, labels1 as _],
)
.build()?;
let chunk2 = Chunk::builder(entity_path.clone())
.with_component_batches(
row_id2_1,
timepoint_static.clone(),
[points2 as _, colors2 as _],
)
.build()?;
let chunk3 = Chunk::builder(entity_path.clone())
.with_component_batches(row_id2_2, timepoint_static, [labels2 as _])
.build()?;
let chunk1 = Arc::new(chunk1);
let chunk2 = Arc::new(chunk2);
let chunk3 = Arc::new(chunk3);
let events = store.insert_chunk(&chunk1)?;
assert!(
events.len() == 1
&& events[0].chunk.id() == chunk1.id()
&& events[0].kind == ChunkStoreDiffKind::Addition,
"the first write should result in the addition of chunk1 and nothing else"
);
let events = store.insert_chunk(&chunk2)?;
assert!(
events.len() == 1
&& events[0].chunk.id() == chunk2.id()
&& events[0].kind == ChunkStoreDiffKind::Addition,
"the second write should result in the addition of chunk2 and nothing else"
);
let stats_before = store.stats();
{
let ChunkStoreChunkStats {
num_chunks,
total_size_bytes: _,
num_rows,
num_events,
} = stats_before.static_chunks;
assert_eq!(2, num_chunks);
assert_eq!(2, num_rows);
assert_eq!(5, num_events);
}
let events = store.insert_chunk(&chunk3)?;
assert!(
events.len() == 2
&& events[0].chunk.id() == chunk3.id()
&& events[0].kind == ChunkStoreDiffKind::Addition
&& events[1].chunk.id() == chunk1.id()
&& events[1].kind == ChunkStoreDiffKind::Deletion,
"the final write should result in the addition of chunk3 _and_ the deletion of the now fully overwritten chunk1"
);
let stats_after = store.stats();
{
let ChunkStoreChunkStats {
num_chunks,
total_size_bytes: _,
num_rows,
num_events,
} = stats_after.static_chunks;
assert_eq!(2, num_chunks);
assert_eq!(2, num_rows);
assert_eq!(3, num_events);
}
Ok(())
}
}