1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
use std::sync::mpsc::Sender;
use std::thread;

use anyhow::{anyhow, Context};
use arrow::array::{
    ArrayRef, BinaryArray, FixedSizeListArray, Int64Array, RecordBatch, StructArray,
};
use arrow::compute::cast;
use arrow::datatypes::{DataType, Field};
use itertools::Either;
use re_arrow_util::{arrow_util::extract_fixed_size_array_element, ArrowArrayDowncastRef};
use re_chunk::external::nohash_hasher::IntMap;
use re_chunk::{
    ArrowArray, Chunk, ChunkId, EntityPath, RowId, TimeColumn, TimeInt, TimePoint, Timeline,
};

use re_log_types::{ApplicationId, StoreId};
use re_types::archetypes::{AssetVideo, EncodedImage, TextDocument, VideoFrameReference};
use re_types::components::{Scalar, VideoTimestamp};
use re_types::{Archetype, Component, ComponentBatch};

use crate::lerobot::{is_lerobot_dataset, DType, EpisodeIndex, Feature, LeRobotDataset, TaskIndex};
use crate::load_file::prepare_store_info;
use crate::{DataLoader, DataLoaderError, LoadedData};

/// Columns in the `LeRobot` dataset schema that we do not visualize in the viewer, and thus ignore.
const LEROBOT_DATASET_IGNORED_COLUMNS: &[&str] =
    &["episode_index", "index", "frame_index", "timestamp"];

/// A [`DataLoader`] for `LeRobot` datasets.
///
/// An example dataset which can be loaded can be found on Hugging Face: [lerobot/pusht_image](https://huggingface.co/datasets/lerobot/pusht_image)
pub struct LeRobotDatasetLoader;

impl DataLoader for LeRobotDatasetLoader {
    fn name(&self) -> String {
        "LeRobotDatasetLoader".into()
    }

    fn load_from_path(
        &self,
        settings: &crate::DataLoaderSettings,
        filepath: std::path::PathBuf,
        tx: Sender<LoadedData>,
    ) -> Result<(), DataLoaderError> {
        if !is_lerobot_dataset(&filepath) {
            return Err(DataLoaderError::Incompatible(filepath));
        }

        let dataset = LeRobotDataset::load_from_directory(&filepath)
            .map_err(|err| anyhow!("Loading LeRobot dataset failed: {err}"))?;
        let application_id = settings
            .application_id
            .clone()
            .unwrap_or(ApplicationId(format!("{filepath:?}")));

        // NOTE(1): `spawn` is fine, this whole function is native-only.
        // NOTE(2): this must spawned on a dedicated thread to avoid a deadlock!
        // `load` will spawn a bunch of loaders on the common rayon thread pool and wait for
        // their response via channels: we cannot be waiting for these responses on the
        // common rayon thread pool.
        thread::Builder::new()
            .name(format!("load_and_stream({filepath:?}"))
            .spawn({
                move || {
                    re_log::info!(
                        "Loading LeRobot dataset from {:?}, with {} episode(s)",
                        dataset.path,
                        dataset.metadata.episodes.len(),
                    );
                    load_and_stream(&dataset, &application_id, &tx);
                }
            })
            .with_context(|| {
                format!("Failed to spawn IO thread to load LeRobot dataset {filepath:?} ")
            })?;

        Ok(())
    }

    fn load_from_file_contents(
        &self,
        _settings: &crate::DataLoaderSettings,
        filepath: std::path::PathBuf,
        _contents: std::borrow::Cow<'_, [u8]>,
        _tx: Sender<LoadedData>,
    ) -> Result<(), DataLoaderError> {
        Err(DataLoaderError::Incompatible(filepath))
    }
}

fn load_and_stream(
    dataset: &LeRobotDataset,
    application_id: &ApplicationId,
    tx: &Sender<crate::LoadedData>,
) {
    // set up all recordings
    let episodes = prepare_episode_chunks(dataset, application_id, tx);

    for (episode, store_id) in &episodes {
        // log episode data to its respective recording
        match load_episode(dataset, *episode) {
            Ok(chunks) => {
                for chunk in chunks {
                    let data = LoadedData::Chunk(
                        LeRobotDatasetLoader::name(&LeRobotDatasetLoader),
                        store_id.clone(),
                        chunk,
                    );

                    if tx.send(data).is_err() {
                        break; // The other end has decided to hang up, not our problem.
                    }
                }
            }
            Err(err) => {
                re_log::warn!(
                    "Failed to load episode {} from LeRobot dataset: {err}",
                    episode.0
                );
            }
        }
    }
}

/// Prepare the viewer for all episodes, by sending out a [`SetStoreInfo`](`re_log_types::SetStoreInfo`)
/// [`LogMsg`](`re_log_types::LogMsg`) for each episode.
fn prepare_episode_chunks(
    dataset: &LeRobotDataset,
    application_id: &ApplicationId,
    tx: &Sender<crate::LoadedData>,
) -> Vec<(EpisodeIndex, StoreId)> {
    let mut store_ids = vec![];

    for episode in &dataset.metadata.episodes {
        let episode = episode.index;

        let store_id = StoreId::from_string(
            re_log_types::StoreKind::Recording,
            format!("episode_{}", episode.0),
        );
        let set_store_info = LoadedData::LogMsg(
            LeRobotDatasetLoader::name(&LeRobotDatasetLoader),
            prepare_store_info(
                application_id.clone(),
                &store_id,
                re_log_types::FileSource::Sdk,
            ),
        );

        if tx.send(set_store_info).is_err() {
            break;
        }

        store_ids.push((episode, store_id.clone()));
    }

    store_ids
}

fn load_episode(
    dataset: &LeRobotDataset,
    episode: EpisodeIndex,
) -> Result<Vec<Chunk>, DataLoaderError> {
    let data = dataset
        .read_episode_data(episode)
        .map_err(|err| anyhow!("Reading data for episode {} failed: {err}", episode.0))?;

    let frame_indices = data
        .column_by_name("frame_index")
        .ok_or_else(|| anyhow!("Failed to get frame index column in LeRobot dataset"))?
        .clone();

    let timeline = re_log_types::Timeline::new_sequence("frame_index");
    let times: &arrow::buffer::ScalarBuffer<i64> = frame_indices
        .downcast_array_ref::<Int64Array>()
        .ok_or_else(|| anyhow!("LeRobot dataset frame indices are of an unexpected type"))?
        .values();

    let time_column = re_chunk::TimeColumn::new(None, timeline, times.clone());
    let timelines = std::iter::once((timeline, time_column.clone())).collect();

    let mut chunks = Vec::new();

    for (feature_key, feature) in dataset
        .metadata
        .info
        .features
        .iter()
        .filter(|(key, _)| !LEROBOT_DATASET_IGNORED_COLUMNS.contains(&key.as_str()))
    {
        match feature.dtype {
            DType::Video => {
                chunks.extend(load_episode_video(
                    dataset,
                    feature_key,
                    episode,
                    &timeline,
                    time_column.clone(),
                )?);
            }

            DType::Image => chunks.extend(load_episode_images(feature_key, &timeline, &data)?),
            DType::Int64 if feature_key == "task_index" => {
                // special case int64 task_index columns
                // this always refers to the task description in the dataset metadata.
                chunks.extend(log_episode_task(dataset, &timeline, &data)?);
            }
            DType::Int64 | DType::Bool | DType::String => {
                re_log::warn_once!(
                    "Loading LeRobot feature ({}) of dtype `{:?}` into Rerun is not yet implemented",
                    feature_key,
                    feature.dtype
                );
            }
            DType::Float32 | DType::Float64 => {
                chunks.extend(load_scalar(feature_key, feature, &timelines, &data)?);
            }
        }
    }

    Ok(chunks)
}

fn log_episode_task(
    dataset: &LeRobotDataset,
    timeline: &Timeline,
    data: &RecordBatch,
) -> Result<impl ExactSizeIterator<Item = Chunk>, DataLoaderError> {
    let task_indices = data
        .column_by_name("task_index")
        .and_then(|c| c.downcast_array_ref::<Int64Array>())
        .with_context(|| "Failed to get task_index field from dataset!")?;

    let mut chunk = Chunk::builder("task".into());
    let mut row_id = RowId::new();
    let mut time_int = TimeInt::ZERO;

    for task_index in task_indices {
        let Some(task) = task_index
            .and_then(|i| usize::try_from(i).ok())
            .and_then(|i| dataset.task_by_index(TaskIndex(i)))
        else {
            // if there is no valid task for the current frame index, we skip it.
            time_int = time_int.inc();
            continue;
        };

        let mut timepoint = TimePoint::default();
        timepoint.insert(*timeline, time_int);
        let text = TextDocument::new(task.task.clone());
        chunk = chunk.with_archetype(row_id, timepoint, &text);

        row_id = row_id.next();
        time_int = time_int.inc();
    }

    Ok(std::iter::once(chunk.build()?))
}

fn load_episode_images(
    observation: &str,
    timeline: &Timeline,
    data: &RecordBatch,
) -> Result<impl ExactSizeIterator<Item = Chunk>, DataLoaderError> {
    let image_bytes = data
        .column_by_name(observation)
        .and_then(|c| c.downcast_array_ref::<StructArray>())
        .and_then(|a| a.column_by_name("bytes"))
        .and_then(|a| a.downcast_array_ref::<BinaryArray>())
        .with_context(|| format!("Failed to get binary data from image feature: {observation}"))?;

    let mut chunk = Chunk::builder(observation.into());
    let mut row_id = RowId::new();
    let mut time_int = TimeInt::ZERO;

    for idx in 0..image_bytes.len() {
        let img_buffer = image_bytes.value(idx);
        let encoded_image = EncodedImage::from_file_contents(img_buffer.to_owned());
        let mut timepoint = TimePoint::default();
        timepoint.insert(*timeline, time_int);
        chunk = chunk.with_archetype(row_id, timepoint, &encoded_image);

        row_id = row_id.next();
        time_int = time_int.inc();
    }

    Ok(std::iter::once(chunk.build().with_context(|| {
        format!("Failed to build image chunk for image: {observation}")
    })?))
}

fn load_episode_video(
    dataset: &LeRobotDataset,
    observation: &str,
    episode: EpisodeIndex,
    timeline: &Timeline,
    time_column: TimeColumn,
) -> Result<impl ExactSizeIterator<Item = Chunk>, DataLoaderError> {
    let contents = dataset
        .read_episode_video_contents(observation, episode)
        .with_context(|| format!("Reading video contents for episode {episode:?} failed!"))?;

    let video_asset = AssetVideo::new(contents.into_owned());
    let entity_path = observation;

    let video_frame_reference_chunk = match video_asset.read_frame_timestamps_ns() {
        Ok(frame_timestamps_ns) => {
            let frame_timestamps_ns: arrow::buffer::ScalarBuffer<i64> = frame_timestamps_ns.into();

            let video_timestamps = frame_timestamps_ns
                .iter()
                .copied()
                .map(VideoTimestamp::from_nanoseconds)
                .collect::<Vec<_>>();
            let video_timestamp_batch = &video_timestamps as &dyn ComponentBatch;
            let video_timestamp_list_array = video_timestamp_batch
                .to_arrow_list_array()
                .map_err(re_chunk::ChunkError::from)?;

            // Indicator column.
            let video_frame_reference_indicators =
                <VideoFrameReference as Archetype>::Indicator::new_array(video_timestamps.len());
            let video_frame_reference_indicators_list_array = video_frame_reference_indicators
                .to_arrow_list_array()
                .map_err(re_chunk::ChunkError::from)?;

            Some(Chunk::from_auto_row_ids(
                re_chunk::ChunkId::new(),
                entity_path.into(),
                std::iter::once((*timeline, time_column)).collect(),
                [
                    (
                        VideoFrameReference::indicator().descriptor.clone(),
                        video_frame_reference_indicators_list_array,
                    ),
                    (
                        video_timestamp_batch.descriptor().into_owned(),
                        video_timestamp_list_array,
                    ),
                ]
                .into_iter()
                .collect(),
            )?)
        }
        Err(err) => {
            re_log::warn_once!(
                "Failed to read frame timestamps from episode {episode:?} video: {err}"
            );
            None
        }
    };

    // Put video asset into its own (static) chunk since it can be fairly large.
    let video_asset_chunk = Chunk::builder(entity_path.into())
        .with_archetype(RowId::new(), TimePoint::default(), &video_asset)
        .build()?;

    if let Some(video_frame_reference_chunk) = video_frame_reference_chunk {
        Ok(Either::Left(
            [video_asset_chunk, video_frame_reference_chunk].into_iter(),
        ))
    } else {
        // Still log the video asset, but don't include video frames.
        Ok(Either::Right(std::iter::once(video_asset_chunk)))
    }
}

/// Helper type similar to [`Either`], but with 3 variants.
enum ScalarChunkIterator {
    Empty(std::iter::Empty<Chunk>),
    Batch(Box<dyn ExactSizeIterator<Item = Chunk>>),
    Single(std::iter::Once<Chunk>),
}

impl Iterator for ScalarChunkIterator {
    type Item = Chunk;

    fn next(&mut self) -> Option<Self::Item> {
        match self {
            Self::Empty(iter) => iter.next(),
            Self::Batch(iter) => iter.next(),
            Self::Single(iter) => iter.next(),
        }
    }
}

impl ExactSizeIterator for ScalarChunkIterator {}

fn load_scalar(
    feature_key: &str,
    feature: &Feature,
    timelines: &IntMap<Timeline, TimeColumn>,
    data: &RecordBatch,
) -> Result<ScalarChunkIterator, DataLoaderError> {
    let field = data
        .schema_ref()
        .field_with_name(feature_key)
        .with_context(|| {
            format!("Failed to get field for feature {feature_key} from parquet file")
        })?;

    match field.data_type() {
        DataType::FixedSizeList(_, _) => {
            let fixed_size_array = data
                .column_by_name(feature_key)
                .and_then(|col| col.downcast_array_ref::<FixedSizeListArray>())
                .ok_or_else(|| {
                    DataLoaderError::Other(anyhow!(
                        "Failed to downcast feature to FixedSizeListArray"
                    ))
                })?;

            let batch_chunks =
                make_scalar_batch_entity_chunks(field, feature, timelines, fixed_size_array)?;
            Ok(ScalarChunkIterator::Batch(Box::new(batch_chunks)))
        }
        DataType::Float32 => {
            let feature_data = data.column_by_name(feature_key).ok_or_else(|| {
                DataLoaderError::Other(anyhow!(
                    "Failed to get LeRobot dataset column data for: {:?}",
                    field.name()
                ))
            })?;

            Ok(ScalarChunkIterator::Single(std::iter::once(
                make_scalar_entity_chunk(
                    field.name().clone().into(),
                    timelines,
                    &feature_data.clone(),
                )?,
            )))
        }
        _ => {
            re_log::warn_once!(
                "Tried logging scalar {} with unsupported dtype: {}",
                field.name(),
                field.data_type()
            );
            Ok(ScalarChunkIterator::Empty(std::iter::empty()))
        }
    }
}

fn make_scalar_batch_entity_chunks(
    field: &Field,
    feature: &Feature,
    timelines: &IntMap<Timeline, TimeColumn>,
    data: &FixedSizeListArray,
) -> Result<impl ExactSizeIterator<Item = Chunk>, DataLoaderError> {
    let num_elements = data.value_length() as usize;

    let mut chunks = Vec::with_capacity(num_elements);

    for idx in 0..num_elements {
        let name = feature
            .names
            .as_ref()
            .and_then(|names| names.name_for_index(idx).cloned())
            .unwrap_or(format!("{idx}"));

        // The data that comes out of lerobot is structured as a fixed size array, but Rerun
        // needs us to submit these as individual chunks of scalar values, so for each element
        // in the source array we create a new chunk.
        // TODO(#9005): Once we have Rerun support for native fixed size list arrays we can stop
        // doing this.
        let scalar_values = extract_fixed_size_array_element(data, idx as u32).map_err(|err| {
            anyhow!(
                "Failed to extract values for scalar feature {:?}: {err}",
                field.name()
            )
        })?;

        let entity_path = format!("{}/{name}", field.name());
        chunks.push(make_scalar_entity_chunk(
            entity_path.into(),
            timelines,
            &scalar_values,
        )?);
    }

    Ok(chunks.into_iter())
}

fn make_scalar_entity_chunk(
    entity_path: EntityPath,
    timelines: &IntMap<Timeline, TimeColumn>,
    data: &ArrayRef,
) -> Result<Chunk, DataLoaderError> {
    // cast the slice to f64 first, as scalars need an f64
    let scalar_values = cast(&data, &DataType::Float64).with_context(|| {
        format!(
            "Failed to cast scalar feature {:?} to Float64",
            entity_path.clone()
        )
    })?;

    let sliced = (0..data.len())
        .map(|idx| scalar_values.slice(idx, 1))
        .collect::<Vec<_>>();

    let data_arrays = sliced.iter().map(|e| Some(e.as_ref())).collect::<Vec<_>>();

    let data_field_inner = Field::new("item", DataType::Float64, true /* nullable */);
    #[allow(clippy::unwrap_used)] // we know we've given the right field type
    let data_field_array: arrow::array::ListArray =
        re_arrow_util::arrow_util::arrays_to_list_array(
            data_field_inner.data_type().clone(),
            &data_arrays,
        )
        .unwrap();

    Ok(Chunk::from_auto_row_ids(
        ChunkId::new(),
        entity_path,
        timelines.clone(),
        std::iter::once((
            <Scalar as Component>::descriptor().clone(),
            data_field_array,
        ))
        .collect(),
    )?)
}