1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
use std::sync::Arc;

use nohash_hasher::IntMap;
use parking_lot::Mutex;

use re_chunk::{Chunk, ChunkResult, RowId, TimeInt};
use re_chunk_store::{
    ChunkStore, ChunkStoreChunkStats, ChunkStoreConfig, ChunkStoreDiffKind, ChunkStoreEvent,
    ChunkStoreHandle, ChunkStoreSubscriber, GarbageCollectionOptions, GarbageCollectionTarget,
};
use re_log_types::{
    ApplicationId, EntityPath, EntityPathHash, LogMsg, ResolvedTimeRange, ResolvedTimeRangeF,
    SetStoreInfo, StoreId, StoreInfo, StoreKind, Timeline,
};
use re_query::{
    QueryCache, QueryCacheHandle, StorageEngine, StorageEngineArcReadGuard, StorageEngineReadGuard,
    StorageEngineWriteGuard,
};

use crate::{Error, TimesPerTimeline};

// ----------------------------------------------------------------------------

/// See [`GarbageCollectionOptions::time_budget`].
pub const DEFAULT_GC_TIME_BUDGET: std::time::Duration = std::time::Duration::from_micros(3500); // empirical

// ----------------------------------------------------------------------------

/// An in-memory database built from a stream of [`LogMsg`]es.
///
/// NOTE: all mutation is to be done via public functions!
pub struct EntityDb {
    /// Set by whomever created this [`EntityDb`].
    ///
    /// Clones of an [`EntityDb`] gets a `None` source.
    pub data_source: Option<re_smart_channel::SmartChannelSource>,

    /// Comes in a special message, [`LogMsg::SetStoreInfo`].
    set_store_info: Option<SetStoreInfo>,

    /// Keeps track of the last time data was inserted into this store (viewer wall-clock).
    last_modified_at: web_time::Instant,

    /// The highest `RowId` in the store,
    /// which corresponds to the last edit time.
    /// Ignores deletions.
    latest_row_id: Option<RowId>,

    /// In many places we just store the hashes, so we need a way to translate back.
    entity_path_from_hash: IntMap<EntityPathHash, EntityPath>,

    /// The global-scope time tracker.
    ///
    /// For each timeline, keeps track of what times exist, recursively across all
    /// entities/components.
    ///
    /// Used for time control.
    ///
    /// TODO(#7084): Get rid of [`TimesPerTimeline`] and implement time-stepping with [`crate::TimeHistogram`] instead.
    times_per_timeline: TimesPerTimeline,

    /// A time histogram of all entities, for every timeline.
    time_histogram_per_timeline: crate::TimeHistogramPerTimeline,

    /// A tree-view (split on path components) of the entities.
    tree: crate::EntityTree,

    /// The [`StorageEngine`] that backs this [`EntityDb`].
    ///
    /// This object and all its internal fields are **never** allowed to be publicly exposed,
    /// whether that is directly or through methods, _even if that's just shared references_.
    ///
    /// The only way to get access to the [`StorageEngine`] from the outside is to use
    /// [`EntityDb::storage_engine`], which returns a read-only guard.
    /// The design statically guarantees the absence of deadlocks and race conditions that normally
    /// results from letting store and cache handles arbitrarily loose all across the codebase.
    storage_engine: StorageEngine,

    stats: IngestionStatistics,
}

impl EntityDb {
    pub fn new(store_id: StoreId) -> Self {
        Self::with_store_config(store_id, ChunkStoreConfig::from_env().unwrap_or_default())
    }

    pub fn with_store_config(store_id: StoreId, store_config: ChunkStoreConfig) -> Self {
        let store = ChunkStoreHandle::new(ChunkStore::new(store_id.clone(), store_config));
        let cache = QueryCacheHandle::new(QueryCache::new(store.clone()));

        // Safety: these handles are never going to be leaked outside of the `EntityDb`.
        #[allow(unsafe_code)]
        let storage_engine = unsafe { StorageEngine::new(store, cache) };

        Self {
            data_source: None,
            set_store_info: None,
            last_modified_at: web_time::Instant::now(),
            latest_row_id: None,
            entity_path_from_hash: Default::default(),
            times_per_timeline: Default::default(),
            tree: crate::EntityTree::root(),
            time_histogram_per_timeline: Default::default(),
            storage_engine,
            stats: IngestionStatistics::new(store_id),
        }
    }

    #[inline]
    pub fn tree(&self) -> &crate::EntityTree {
        &self.tree
    }

    /// Returns a read-only guard to the backing [`StorageEngine`].
    #[inline]
    pub fn storage_engine(&self) -> StorageEngineReadGuard<'_> {
        self.storage_engine.read()
    }

    /// Returns a read-only guard to the backing [`StorageEngine`].
    ///
    /// That guard can be cloned at will and has a static lifetime.
    ///
    /// It is not possible to insert any more data in this [`EntityDb`] until the returned guard,
    /// and any clones, have been dropped.
    #[inline]
    pub fn storage_engine_arc(&self) -> StorageEngineArcReadGuard {
        self.storage_engine.read_arc()
    }

    pub fn store_info_msg(&self) -> Option<&SetStoreInfo> {
        self.set_store_info.as_ref()
    }

    pub fn store_info(&self) -> Option<&StoreInfo> {
        self.store_info_msg().map(|msg| &msg.info)
    }

    pub fn app_id(&self) -> Option<&ApplicationId> {
        self.store_info().map(|ri| &ri.application_id)
    }

    /// Queries for the given `component_names` using latest-at semantics.
    ///
    /// See [`re_query::LatestAtResults`] for more information about how to handle the results.
    ///
    /// This is a cached API -- data will be lazily cached upon access.
    #[inline]
    pub fn latest_at(
        &self,
        query: &re_chunk_store::LatestAtQuery,
        entity_path: &EntityPath,
        component_names: impl IntoIterator<Item = re_types_core::ComponentName>,
    ) -> re_query::LatestAtResults {
        self.storage_engine
            .read()
            .cache()
            .latest_at(query, entity_path, component_names)
    }

    /// Get the latest index and value for a given dense [`re_types_core::Component`].
    ///
    /// This assumes that the row we get from the store contains at most one instance for this
    /// component; it will log a warning otherwise.
    ///
    /// This should only be used for "mono-components" such as `Transform` and `Tensor`.
    ///
    /// This is a best-effort helper, it will merely log errors on failure.
    #[inline]
    pub fn latest_at_component<C: re_types_core::Component>(
        &self,
        entity_path: &EntityPath,
        query: &re_chunk_store::LatestAtQuery,
    ) -> Option<((TimeInt, RowId), C)> {
        let results =
            self.storage_engine
                .read()
                .cache()
                .latest_at(query, entity_path, [&C::descriptor()]);
        results
            .component_mono()
            .map(|value| (results.index(), value))
    }

    /// Get the latest index and value for a given dense [`re_types_core::Component`].
    ///
    /// This assumes that the row we get from the store contains at most one instance for this
    /// component; it will log a warning otherwise.
    ///
    /// This should only be used for "mono-components" such as `Transform` and `Tensor`.
    ///
    /// This is a best-effort helper, and will quietly swallow any errors.
    #[inline]
    pub fn latest_at_component_quiet<C: re_types_core::Component>(
        &self,
        entity_path: &EntityPath,
        query: &re_chunk_store::LatestAtQuery,
    ) -> Option<((TimeInt, RowId), C)> {
        let results =
            self.storage_engine
                .read()
                .cache()
                .latest_at(query, entity_path, [&C::descriptor()]);
        results
            .component_mono_quiet()
            .map(|value| (results.index(), value))
    }

    #[inline]
    pub fn latest_at_component_at_closest_ancestor<C: re_types_core::Component>(
        &self,
        entity_path: &EntityPath,
        query: &re_chunk_store::LatestAtQuery,
    ) -> Option<(EntityPath, (TimeInt, RowId), C)> {
        re_tracing::profile_function!();

        let mut cur_entity_path = Some(entity_path.clone());
        while let Some(entity_path) = cur_entity_path {
            if let Some((index, value)) = self.latest_at_component(&entity_path, query) {
                return Some((entity_path, index, value));
            }
            cur_entity_path = entity_path.parent();
        }

        None
    }

    #[inline]
    pub fn store_kind(&self) -> StoreKind {
        self.store_id().kind
    }

    #[inline]
    pub fn store_id(&self) -> StoreId {
        self.storage_engine.read().store().id()
    }

    /// If this entity db is the result of a clone, which store was it cloned from?
    ///
    /// A cloned store always gets a new unique ID.
    ///
    /// We currently only use entity db cloning for blueprints:
    /// when we activate a _default_ blueprint that was received on the wire (e.g. from a recording),
    /// we clone it and make the clone the _active_ blueprint.
    /// This means all active blueprints are clones.
    #[inline]
    pub fn cloned_from(&self) -> Option<&StoreId> {
        self.store_info().and_then(|info| info.cloned_from.as_ref())
    }

    pub fn timelines(&self) -> impl ExactSizeIterator<Item = &Timeline> {
        self.time_histogram_per_timeline.timelines()
    }

    pub fn times_per_timeline(&self) -> &TimesPerTimeline {
        &self.times_per_timeline
    }

    pub fn has_any_data_on_timeline(&self, timeline: &Timeline) -> bool {
        self.time_histogram_per_timeline
            .get(timeline)
            .map_or(false, |hist| !hist.is_empty())
    }

    /// Returns the time range of data on the given timeline, ignoring any static times.
    pub fn time_range_for(&self, timeline: &Timeline) -> Option<ResolvedTimeRange> {
        let hist = self.time_histogram_per_timeline.get(timeline)?;
        let min = hist.min_key()?;
        let max = hist.max_key()?;
        Some(ResolvedTimeRange::new(min, max))
    }

    /// Histogram of all events on the timeeline, of all entities.
    pub fn time_histogram(&self, timeline: &Timeline) -> Option<&crate::TimeHistogram> {
        self.time_histogram_per_timeline.get(timeline)
    }

    #[inline]
    pub fn num_rows(&self) -> u64 {
        self.storage_engine.read().store().stats().total().num_rows
    }

    /// Return the current `ChunkStoreGeneration`. This can be used to determine whether the
    /// database has been modified since the last time it was queried.
    #[inline]
    pub fn generation(&self) -> re_chunk_store::ChunkStoreGeneration {
        self.storage_engine.read().store().generation()
    }

    #[inline]
    pub fn last_modified_at(&self) -> web_time::Instant {
        self.last_modified_at
    }

    /// The highest `RowId` in the store,
    /// which corresponds to the last edit time.
    /// Ignores deletions.
    #[inline]
    pub fn latest_row_id(&self) -> Option<RowId> {
        self.latest_row_id
    }

    #[inline]
    pub fn is_empty(&self) -> bool {
        self.set_store_info.is_none() && self.num_rows() == 0
    }

    /// A sorted list of all the entity paths in this database.
    pub fn entity_paths(&self) -> Vec<&EntityPath> {
        use itertools::Itertools as _;
        self.entity_path_from_hash.values().sorted().collect()
    }

    #[inline]
    pub fn ingestion_stats(&self) -> &IngestionStatistics {
        &self.stats
    }

    #[inline]
    pub fn entity_path_from_hash(&self, entity_path_hash: &EntityPathHash) -> Option<&EntityPath> {
        self.entity_path_from_hash.get(entity_path_hash)
    }

    /// Returns `true` also for entities higher up in the hierarchy.
    #[inline]
    pub fn is_known_entity(&self, entity_path: &EntityPath) -> bool {
        self.tree.subtree(entity_path).is_some()
    }

    /// If you log `world/points`, then that is a logged entity, but `world` is not,
    /// unless you log something to `world` too.
    #[inline]
    pub fn is_logged_entity(&self, entity_path: &EntityPath) -> bool {
        self.entity_path_from_hash.contains_key(&entity_path.hash())
    }

    pub fn add(&mut self, msg: &LogMsg) -> Result<Vec<ChunkStoreEvent>, Error> {
        re_tracing::profile_function!();

        debug_assert_eq!(*msg.store_id(), self.store_id());

        let store_events = match &msg {
            LogMsg::SetStoreInfo(msg) => {
                self.set_store_info(msg.clone());
                vec![]
            }

            LogMsg::ArrowMsg(_, arrow_msg) => {
                self.last_modified_at = web_time::Instant::now();

                let mut chunk = re_chunk::Chunk::from_arrow_msg(arrow_msg)?;
                chunk.sort_if_unsorted();
                self.add_chunk(&Arc::new(chunk))?
            }

            LogMsg::BlueprintActivationCommand(_) => {
                // Not for us to handle
                vec![]
            }
        };

        Ok(store_events)
    }

    pub fn add_chunk(&mut self, chunk: &Arc<Chunk>) -> Result<Vec<ChunkStoreEvent>, Error> {
        let mut engine = self.storage_engine.write();
        let store_events = engine.store().insert_chunk(chunk)?;
        engine.cache().on_events(&store_events);

        self.entity_path_from_hash
            .entry(chunk.entity_path().hash())
            .or_insert_with(|| chunk.entity_path().clone());

        let engine = engine.downgrade();

        if self.latest_row_id < chunk.row_id_range().map(|(_, row_id_max)| row_id_max) {
            self.latest_row_id = chunk.row_id_range().map(|(_, row_id_max)| row_id_max);
        }

        {
            // Update our internal views by notifying them of resulting [`ChunkStoreEvent`]s.
            self.times_per_timeline.on_events(&store_events);
            self.time_histogram_per_timeline.on_events(&store_events);
            self.tree.on_store_additions(&store_events);

            // It is possible for writes to trigger deletions: specifically in the case of
            // overwritten static data leading to dangling chunks.
            let entity_paths_with_deletions = store_events
                .iter()
                .filter(|event| event.kind == ChunkStoreDiffKind::Deletion)
                .map(|event| event.chunk.entity_path().clone())
                .collect();

            {
                re_tracing::profile_scope!("on_store_deletions");
                self.tree
                    .on_store_deletions(&engine, &entity_paths_with_deletions, &store_events);
            }

            // We inform the stats last, since it measures e2e latency.
            self.stats.on_events(&store_events);
        }

        Ok(store_events)
    }

    pub fn set_store_info(&mut self, store_info: SetStoreInfo) {
        self.set_store_info = Some(store_info);
    }

    /// Free up some RAM by forgetting the older parts of all timelines.
    pub fn purge_fraction_of_ram(&mut self, fraction_to_purge: f32) -> Vec<ChunkStoreEvent> {
        re_tracing::profile_function!();

        assert!((0.0..=1.0).contains(&fraction_to_purge));

        let store_events = self.gc(&GarbageCollectionOptions {
            target: GarbageCollectionTarget::DropAtLeastFraction(fraction_to_purge as _),
            protect_latest: 1,
            time_budget: DEFAULT_GC_TIME_BUDGET,

            // TODO(emilk): we could protect the data that is currently being viewed
            // (e.g. when paused in the live camera example).
            // To be perfect it would need margins (because of latest-at), i.e. we would need to know
            // exactly how far back the latest-at is of each component at the current time…
            // …but maybe it doesn't have to be perfect.
            protected_time_ranges: Default::default(),
        });

        if store_events.is_empty() {
            // If we weren't able to collect any data, then we need to GC the cache itself in order
            // to regain some space.
            // See <https://github.com/rerun-io/rerun/issues/7369#issuecomment-2335164098> for the
            // complete rationale.
            self.storage_engine
                .write()
                .cache()
                .purge_fraction_of_ram(fraction_to_purge);
        }

        store_events
    }

    pub fn gc(&mut self, gc_options: &GarbageCollectionOptions) -> Vec<ChunkStoreEvent> {
        re_tracing::profile_function!();

        let mut engine = self.storage_engine.write();
        let (store_events, stats_diff) = engine.store().gc(gc_options);

        re_log::trace!(
            num_row_ids_dropped = store_events.len(),
            size_bytes_dropped = re_format::format_bytes(stats_diff.total().total_size_bytes as _),
            "purged datastore"
        );

        Self::on_store_deletions(
            &mut self.times_per_timeline,
            &mut self.time_histogram_per_timeline,
            &mut self.tree,
            engine,
            &store_events,
        );

        store_events
    }

    /// Drop all events in the given time range from the given timeline.
    ///
    /// Used to implement undo (erase the last event from the blueprint db).
    pub fn drop_time_range(
        &mut self,
        timeline: &Timeline,
        drop_range: ResolvedTimeRange,
    ) -> Vec<ChunkStoreEvent> {
        re_tracing::profile_function!();

        let mut engine = self.storage_engine.write();

        let store_events = engine.store().drop_time_range(timeline, drop_range);
        Self::on_store_deletions(
            &mut self.times_per_timeline,
            &mut self.time_histogram_per_timeline,
            &mut self.tree,
            engine,
            &store_events,
        );

        store_events
    }

    /// Unconditionally drops all the data for a given [`EntityPath`] .
    ///
    /// This is _not_ recursive. Children of this entity will not be affected.
    ///
    /// To drop the entire subtree below an entity, see: [`Self::drop_entity_path_recursive`].
    pub fn drop_entity_path(&mut self, entity_path: &EntityPath) {
        re_tracing::profile_function!();

        let mut engine = self.storage_engine.write();

        let store_events = engine.store().drop_entity_path(entity_path);
        Self::on_store_deletions(
            &mut self.times_per_timeline,
            &mut self.time_histogram_per_timeline,
            &mut self.tree,
            engine,
            &store_events,
        );
    }

    /// Unconditionally drops all the data for a given [`EntityPath`] and all its children.
    pub fn drop_entity_path_recursive(&mut self, entity_path: &EntityPath) {
        re_tracing::profile_function!();

        let mut to_drop = vec![entity_path.clone()];

        if let Some(tree) = self.tree().subtree(entity_path) {
            tree.visit_children_recursively(|path| {
                to_drop.push(path.clone());
            });
        }

        for entity_path in to_drop {
            self.drop_entity_path(&entity_path);
        }
    }

    // NOTE: Parameters deconstructed instead of taking `self`, because borrowck cannot understand
    // partial borrows on methods.
    fn on_store_deletions(
        times_per_timeline: &mut TimesPerTimeline,
        time_histogram_per_timeline: &mut crate::TimeHistogramPerTimeline,
        tree: &mut crate::EntityTree,
        mut engine: StorageEngineWriteGuard<'_>,
        store_events: &[ChunkStoreEvent],
    ) {
        engine.cache().on_events(store_events);
        times_per_timeline.on_events(store_events);
        time_histogram_per_timeline.on_events(store_events);

        let engine = engine.downgrade();
        let entity_paths_with_deletions = store_events
            .iter()
            .filter(|event| event.kind == ChunkStoreDiffKind::Deletion)
            .map(|event| event.chunk.entity_path().clone())
            .collect();
        tree.on_store_deletions(&engine, &entity_paths_with_deletions, store_events);
    }

    /// Key used for sorting recordings in the UI.
    pub fn sort_key(&self) -> impl Ord + '_ {
        self.store_info()
            .map(|info| (info.application_id.0.as_str(), info.started))
    }

    /// Export the contents of the current database to a sequence of messages.
    ///
    /// If `time_selection` is specified, then only data for that specific timeline over that
    /// specific time range will be accounted for.
    pub fn to_messages(
        &self,
        time_selection: Option<(Timeline, ResolvedTimeRangeF)>,
    ) -> impl Iterator<Item = ChunkResult<LogMsg>> + '_ {
        re_tracing::profile_function!();

        let engine = self.storage_engine.read();

        let set_store_info_msg = self
            .store_info_msg()
            .map(|msg| Ok(LogMsg::SetStoreInfo(msg.clone())));

        let data_messages = {
            let time_filter = time_selection.map(|(timeline, range)| {
                (
                    timeline,
                    ResolvedTimeRange::new(range.min.floor(), range.max.ceil()),
                )
            });

            let mut chunks: Vec<Arc<Chunk>> = engine
                .store()
                .iter_chunks()
                .filter(move |chunk| {
                    let Some((timeline, time_range)) = time_filter else {
                        return true;
                    };

                    // TODO(cmc): chunk.slice_time_selection(time_selection)
                    chunk
                        .timelines()
                        .get(&timeline)
                        .map_or(false, |time_column| {
                            time_range.contains(time_column.time_range().min())
                                || time_range.contains(time_column.time_range().max())
                        })
                })
                .cloned() // refcount
                .collect();

            // Try to roughly preserve the order of the chunks
            // from how they were originally logged.
            // See https://github.com/rerun-io/rerun/issues/7175 for why.
            chunks.sort_by_key(|chunk| chunk.row_id_range().map(|(min, _)| min));

            chunks.into_iter().map(|chunk| {
                chunk
                    .to_arrow_msg()
                    .map(|msg| LogMsg::ArrowMsg(self.store_id().clone(), msg))
            })
        };

        // If this is a blueprint, make sure to include the `BlueprintActivationCommand` message.
        // We generally use `to_messages` to export a blueprint via "save". In that
        // case, we want to make the blueprint active and default when it's reloaded.
        // TODO(jleibs): Coupling this with the stored file instead of injecting seems
        // architecturally weird. Would be great if we didn't need this in `.rbl` files
        // at all.
        let blueprint_ready = if self.store_kind() == StoreKind::Blueprint {
            let activate_cmd =
                re_log_types::BlueprintActivationCommand::make_active(self.store_id().clone());

            itertools::Either::Left(std::iter::once(Ok(activate_cmd.into())))
        } else {
            itertools::Either::Right(std::iter::empty())
        };

        set_store_info_msg
            .into_iter()
            .chain(data_messages)
            .chain(blueprint_ready)
    }

    /// Make a clone of this [`EntityDb`], assigning it a new [`StoreId`].
    pub fn clone_with_new_id(&self, new_id: StoreId) -> Result<Self, Error> {
        re_tracing::profile_function!();

        let mut new_db = Self::new(new_id.clone());

        new_db.last_modified_at = self.last_modified_at;
        new_db.latest_row_id = self.latest_row_id;

        // We do NOT clone the `data_source`, because the reason we clone an entity db
        // is so that we can modify it, and then it would be wrong to say its from the same source.
        // Specifically: if we load a blueprint from an `.rdd`, then modify it heavily and save it,
        // it would be wrong to claim that this was the blueprint from that `.rrd`,
        // and it would confuse the user.
        // TODO(emilk): maybe we should use a special `Cloned` data source,
        // wrapping either the original source, the original StoreId, or both.

        if let Some(store_info) = self.store_info() {
            let mut new_info = store_info.clone();
            new_info.store_id = new_id;
            new_info.cloned_from = Some(self.store_id().clone());

            new_db.set_store_info(SetStoreInfo {
                row_id: *RowId::new(),
                info: new_info,
            });
        }

        let engine = self.storage_engine.read();
        for chunk in engine.store().iter_chunks() {
            new_db.add_chunk(&Arc::clone(chunk))?;
        }

        Ok(new_db)
    }
}

/// ## Stats
impl EntityDb {
    /// Returns the stats for the static store of the entity and all its children, recursively.
    ///
    /// This excludes temporal data.
    pub fn subtree_stats_static(
        &self,
        engine: &StorageEngineReadGuard<'_>,
        entity_path: &EntityPath,
    ) -> ChunkStoreChunkStats {
        re_tracing::profile_function!();

        let Some(subtree) = self.tree.subtree(entity_path) else {
            return Default::default();
        };

        let mut stats = ChunkStoreChunkStats::default();
        subtree.visit_children_recursively(|path| {
            stats += engine.store().entity_stats_static(path);
        });

        stats
    }

    /// Returns the stats for the entity and all its children on the given timeline, recursively.
    ///
    /// This excludes static data.
    pub fn subtree_stats_on_timeline(
        &self,
        engine: &StorageEngineReadGuard<'_>,
        entity_path: &EntityPath,
        timeline: &Timeline,
    ) -> ChunkStoreChunkStats {
        re_tracing::profile_function!();

        let Some(subtree) = self.tree.subtree(entity_path) else {
            return Default::default();
        };

        let mut stats = ChunkStoreChunkStats::default();
        subtree.visit_children_recursively(|path| {
            stats += engine.store().entity_stats_on_timeline(path, timeline);
        });

        stats
    }

    /// Returns true if an entity or any of its children have any data on the given timeline.
    ///
    /// This includes static data.
    pub fn subtree_has_data_on_timeline(
        &self,
        engine: &StorageEngineReadGuard<'_>,
        timeline: &Timeline,
        entity_path: &EntityPath,
    ) -> bool {
        re_tracing::profile_function!();

        let Some(subtree) = self.tree.subtree(entity_path) else {
            return false;
        };

        subtree
            .find_first_child_recursive(|path| {
                engine.store().entity_has_data_on_timeline(timeline, path)
            })
            .is_some()
    }

    /// Returns true if an entity or any of its children have any temporal data on the given timeline.
    ///
    /// This ignores static data.
    pub fn subtree_has_temporal_data_on_timeline(
        &self,
        engine: &StorageEngineReadGuard<'_>,
        timeline: &Timeline,
        entity_path: &EntityPath,
    ) -> bool {
        re_tracing::profile_function!();

        let Some(subtree) = self.tree.subtree(entity_path) else {
            return false;
        };

        subtree
            .find_first_child_recursive(|path| {
                engine
                    .store()
                    .entity_has_temporal_data_on_timeline(timeline, path)
            })
            .is_some()
    }
}

impl re_types_core::SizeBytes for EntityDb {
    #[inline]
    fn heap_size_bytes(&self) -> u64 {
        // TODO(emilk): size of entire EntityDb, including secondary indices etc
        self.storage_engine
            .read()
            .store()
            .stats()
            .total()
            .total_size_bytes
    }
}

// ----------------------------------------------------------------------------

pub struct IngestionStatistics {
    store_id: StoreId,
    e2e_latency_sec_history: Mutex<emath::History<f32>>,
}

impl ChunkStoreSubscriber for IngestionStatistics {
    #[inline]
    fn name(&self) -> String {
        "rerun.testing.store_subscribers.IngestionStatistics".into()
    }

    #[inline]
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    #[inline]
    fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
        self
    }

    #[inline]
    fn on_events(&mut self, events: &[ChunkStoreEvent]) {
        for event in events {
            if event.store_id == self.store_id {
                for row_id in event.diff.chunk.row_ids() {
                    self.on_new_row_id(row_id);
                }
            }
        }
    }
}

impl IngestionStatistics {
    pub fn new(store_id: StoreId) -> Self {
        let min_samples = 0; // 0: we stop displaying e2e latency if input stops
        let max_samples = 1024; // don't waste too much memory on this - we just need enough to get a good average
        let max_age = 1.0; // don't keep too long of a rolling average, or the stats get outdated.
        Self {
            store_id,
            e2e_latency_sec_history: Mutex::new(emath::History::new(
                min_samples..max_samples,
                max_age,
            )),
        }
    }

    fn on_new_row_id(&self, row_id: RowId) {
        if let Ok(duration_since_epoch) = web_time::SystemTime::UNIX_EPOCH.elapsed() {
            let nanos_since_epoch = duration_since_epoch.as_nanos() as u64;

            // This only makes sense if the clocks are very good, i.e. if the recording was on the same machine!
            if let Some(nanos_since_log) =
                nanos_since_epoch.checked_sub(row_id.nanoseconds_since_epoch())
            {
                let now = nanos_since_epoch as f64 / 1e9;
                let sec_since_log = nanos_since_log as f32 / 1e9;

                self.e2e_latency_sec_history.lock().add(now, sec_since_log);
            }
        }
    }

    /// What is the mean latency between the time data was logged in the SDK and the time it was ingested?
    ///
    /// This is based on the clocks of the viewer and the SDK being in sync,
    /// so if the recording was done on another machine, this is likely very inaccurate.
    pub fn current_e2e_latency_sec(&self) -> Option<f32> {
        let mut e2e_latency_sec_history = self.e2e_latency_sec_history.lock();

        if let Ok(duration_since_epoch) = web_time::SystemTime::UNIX_EPOCH.elapsed() {
            let nanos_since_epoch = duration_since_epoch.as_nanos() as u64;
            let now = nanos_since_epoch as f64 / 1e9;
            e2e_latency_sec_history.flush(now); // make sure the average is up-to-date.
        }

        e2e_latency_sec_history.average()
    }
}