1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
use std::{
    collections::{BTreeMap, BTreeSet},
    sync::Arc,
};

use ahash::HashMap;
use nohash_hasher::IntSet;
use parking_lot::RwLock;

use re_chunk::ChunkId;
use re_chunk_store::{
    ChunkCompactionReport, ChunkStoreDiff, ChunkStoreEvent, ChunkStoreHandle, ChunkStoreSubscriber,
};
use re_log_types::{EntityPath, ResolvedTimeRange, StoreId, TimeInt, Timeline};
use re_types_core::{components::ClearIsRecursive, Component as _, ComponentName};

use crate::{LatestAtCache, RangeCache};

// ---

/// Uniquely identifies cached query results in the [`QueryCache`].
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct QueryCacheKey {
    pub entity_path: EntityPath,
    pub timeline: Timeline,
    pub component_name: ComponentName,
}

impl re_types_core::SizeBytes for QueryCacheKey {
    #[inline]
    fn heap_size_bytes(&self) -> u64 {
        let Self {
            entity_path,
            timeline,
            component_name,
        } = self;
        entity_path.heap_size_bytes()
            + timeline.heap_size_bytes()
            + component_name.heap_size_bytes()
    }
}

impl std::fmt::Debug for QueryCacheKey {
    #[inline]
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let Self {
            entity_path,
            timeline,
            component_name,
        } = self;
        f.write_fmt(format_args!(
            "{entity_path}:{component_name} on {}",
            timeline.name()
        ))
    }
}

impl QueryCacheKey {
    #[inline]
    pub fn new(
        entity_path: impl Into<EntityPath>,
        timeline: impl Into<Timeline>,
        component_name: impl Into<ComponentName>,
    ) -> Self {
        Self {
            entity_path: entity_path.into(),
            timeline: timeline.into(),
            component_name: component_name.into(),
        }
    }
}

/// A ref-counted, inner-mutable handle to a [`QueryCache`].
///
/// Cheap to clone.
///
/// It is possible to grab the lock behind this handle while _maintaining a static lifetime_, see:
/// * [`QueryCacheHandle::read_arc`]
/// * [`QueryCacheHandle::write_arc`]
#[derive(Clone)]
pub struct QueryCacheHandle(Arc<parking_lot::RwLock<QueryCache>>);

impl QueryCacheHandle {
    #[inline]
    pub fn new(cache: QueryCache) -> Self {
        Self(Arc::new(parking_lot::RwLock::new(cache)))
    }

    #[inline]
    pub fn into_inner(self) -> Arc<parking_lot::RwLock<QueryCache>> {
        self.0
    }
}

impl QueryCacheHandle {
    #[inline]
    pub fn read(&self) -> parking_lot::RwLockReadGuard<'_, QueryCache> {
        self.0.read_recursive()
    }

    #[inline]
    pub fn try_read(&self) -> Option<parking_lot::RwLockReadGuard<'_, QueryCache>> {
        self.0.try_read_recursive()
    }

    #[inline]
    pub fn write(&self) -> parking_lot::RwLockWriteGuard<'_, QueryCache> {
        self.0.write()
    }

    #[inline]
    pub fn try_write(&self) -> Option<parking_lot::RwLockWriteGuard<'_, QueryCache>> {
        self.0.try_write()
    }

    #[inline]
    pub fn read_arc(&self) -> parking_lot::ArcRwLockReadGuard<parking_lot::RawRwLock, QueryCache> {
        parking_lot::RwLock::read_arc_recursive(&self.0)
    }

    #[inline]
    pub fn try_read_arc(
        &self,
    ) -> Option<parking_lot::ArcRwLockReadGuard<parking_lot::RawRwLock, QueryCache>> {
        parking_lot::RwLock::try_read_recursive_arc(&self.0)
    }

    #[inline]
    pub fn write_arc(
        &self,
    ) -> parking_lot::ArcRwLockWriteGuard<parking_lot::RawRwLock, QueryCache> {
        parking_lot::RwLock::write_arc(&self.0)
    }

    #[inline]
    pub fn try_write_arc(
        &self,
    ) -> Option<parking_lot::ArcRwLockWriteGuard<parking_lot::RawRwLock, QueryCache>> {
        parking_lot::RwLock::try_write_arc(&self.0)
    }
}

pub struct QueryCache {
    /// Handle to the associated [`ChunkStoreHandle`].
    pub(crate) store: ChunkStoreHandle,

    /// The [`StoreId`] of the associated [`ChunkStoreHandle`].
    pub(crate) store_id: StoreId,

    /// Keeps track of which entities have had any `Clear`-related data on any timeline at any
    /// point in time.
    ///
    /// This is used to optimized read-time clears, so that we don't unnecessarily pay for the fixed
    /// overhead of all the query layers when we know for a fact that there won't be any data there.
    /// This is a huge performance improvement in practice, especially in recordings with many entities.
    pub(crate) might_require_clearing: RwLock<IntSet<EntityPath>>,

    // NOTE: `Arc` so we can cheaply free the top-level lock early when needed.
    pub(crate) latest_at_per_cache_key: RwLock<HashMap<QueryCacheKey, Arc<RwLock<LatestAtCache>>>>,

    // NOTE: `Arc` so we can cheaply free the top-level lock early when needed.
    pub(crate) range_per_cache_key: RwLock<HashMap<QueryCacheKey, Arc<RwLock<RangeCache>>>>,
}

impl std::fmt::Debug for QueryCache {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let Self {
            store_id,
            store: _,
            might_require_clearing,
            latest_at_per_cache_key,
            range_per_cache_key,
        } = self;

        let mut strings = Vec::new();

        strings.push(format!(
            "[Entities that must be checked for clears @ {store_id}]\n"
        ));
        {
            let sorted: BTreeSet<EntityPath> =
                might_require_clearing.read().iter().cloned().collect();
            for entity_path in sorted {
                strings.push(format!("  * {entity_path}\n"));
            }
            strings.push("\n".to_owned());
        }

        strings.push(format!("[LatestAt @ {store_id}]"));
        {
            let latest_at_per_cache_key = latest_at_per_cache_key.read();
            let latest_at_per_cache_key: BTreeMap<_, _> = latest_at_per_cache_key.iter().collect();

            for (cache_key, cache) in &latest_at_per_cache_key {
                let cache = cache.read();
                strings.push(format!(
                    "  [{cache_key:?} (pending_invalidation_min={:?})]",
                    cache.pending_invalidations.first().map(|&t| cache_key
                        .timeline
                        .format_time_range_utc(&ResolvedTimeRange::new(t, TimeInt::MAX))),
                ));
                strings.push(indent::indent_all_by(4, format!("{cache:?}")));
            }
        }

        strings.push(format!("[Range @ {store_id}]"));
        {
            let range_per_cache_key = range_per_cache_key.read();
            let range_per_cache_key: BTreeMap<_, _> = range_per_cache_key.iter().collect();

            for (cache_key, cache) in &range_per_cache_key {
                let cache = cache.read();
                strings.push(format!(
                    "  [{cache_key:?} (pending_invalidations={:?})]",
                    cache.pending_invalidations,
                ));
                strings.push(indent::indent_all_by(4, format!("{cache:?}")));
            }
        }

        f.write_str(&strings.join("\n").replace("\n\n", "\n"))
    }
}

impl QueryCache {
    #[inline]
    pub fn new(store: ChunkStoreHandle) -> Self {
        let store_id = store.read().id();
        Self {
            store,
            store_id,
            might_require_clearing: Default::default(),
            latest_at_per_cache_key: Default::default(),
            range_per_cache_key: Default::default(),
        }
    }

    #[inline]
    pub fn new_handle(store: ChunkStoreHandle) -> QueryCacheHandle {
        QueryCacheHandle::new(Self::new(store))
    }

    #[inline]
    pub fn clear(&self) {
        let Self {
            store: _,
            store_id: _,
            might_require_clearing,
            latest_at_per_cache_key,
            range_per_cache_key,
        } = self;

        might_require_clearing.write().clear();
        latest_at_per_cache_key.write().clear();
        range_per_cache_key.write().clear();
    }
}

impl ChunkStoreSubscriber for QueryCache {
    #[inline]
    fn name(&self) -> String {
        "rerun.store_subscribers.QueryCache".into()
    }

    #[inline]
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    #[inline]
    fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
        self
    }

    fn on_events(&mut self, events: &[ChunkStoreEvent]) {
        re_tracing::profile_function!(format!("num_events={}", events.len()));

        #[derive(Default, Debug)]
        struct CompactedEvents {
            static_: HashMap<(EntityPath, ComponentName), BTreeSet<ChunkId>>,
            temporal_latest_at: HashMap<QueryCacheKey, TimeInt>,
            temporal_range: HashMap<QueryCacheKey, BTreeSet<ChunkId>>,
        }

        let mut compacted_events = CompactedEvents::default();

        for event in events {
            let ChunkStoreEvent {
                store_id,
                store_generation: _,
                event_id: _,
                diff,
            } = event;

            assert!(
                self.store_id == *store_id,
                "attempted to use a query cache {} with the wrong datastore ({})",
                self.store_id,
                store_id,
            );

            let ChunkStoreDiff {
                kind: _, // Don't care: both additions and deletions invalidate query results.
                chunk,
                compacted,
            } = diff;

            {
                re_tracing::profile_scope!("compact events");

                if chunk.is_static() {
                    for component_name in chunk.component_names() {
                        let compacted_events = compacted_events
                            .static_
                            .entry((chunk.entity_path().clone(), component_name))
                            .or_default();

                        compacted_events.insert(chunk.id());
                        // If a compaction was triggered, make sure to drop the original chunks too.
                        compacted_events.extend(compacted.iter().flat_map(
                            |ChunkCompactionReport {
                                 srcs: compacted_chunks,
                                 new_chunk: _,
                             }| compacted_chunks.keys().copied(),
                        ));
                    }
                }

                for (timeline, per_component) in chunk.time_range_per_component() {
                    for (component_name, per_desc) in per_component {
                        for (component_desc, time_range) in per_desc {
                            let key = QueryCacheKey::new(
                                chunk.entity_path().clone(),
                                timeline,
                                component_name,
                            );

                            // latest-at
                            {
                                let mut data_time_min = time_range.min();

                                // If a compaction was triggered, make sure to drop the original chunks too.
                                if let Some(ChunkCompactionReport {
                                    srcs: compacted_chunks,
                                    new_chunk: _,
                                }) = compacted
                                {
                                    for chunk in compacted_chunks.values() {
                                        let data_time_compacted = chunk
                                            .time_range_per_component()
                                            .get(&timeline)
                                            .and_then(|per_component| {
                                                per_component.get(&component_name).and_then(
                                                    |per_desc| per_desc.get(&component_desc),
                                                )
                                            })
                                            .map_or(TimeInt::MAX, |time_range| time_range.min());

                                        data_time_min =
                                            TimeInt::min(data_time_min, data_time_compacted);
                                    }
                                }

                                compacted_events
                                    .temporal_latest_at
                                    .entry(key.clone())
                                    .and_modify(|time| *time = TimeInt::min(*time, data_time_min))
                                    .or_insert(data_time_min);
                            }

                            // range
                            {
                                let compacted_events =
                                    compacted_events.temporal_range.entry(key).or_default();

                                compacted_events.insert(chunk.id());
                                // If a compaction was triggered, make sure to drop the original chunks too.
                                compacted_events.extend(compacted.iter().flat_map(
                                    |ChunkCompactionReport {
                                         srcs: compacted_chunks,
                                         new_chunk: _,
                                     }| {
                                        compacted_chunks.keys().copied()
                                    },
                                ));
                            }
                        }
                    }
                }
            }
        }

        let mut might_require_clearing = self.might_require_clearing.write();
        let caches_latest_at = self.latest_at_per_cache_key.write();
        let caches_range = self.range_per_cache_key.write();
        // NOTE: Don't release the top-level locks -- even though this cannot happen yet with
        // our current macro-architecture, we want to prevent queries from concurrently
        // running while we're updating the invalidation flags.

        {
            re_tracing::profile_scope!("static");

            // TODO(cmc): This is horribly stupid and slow and can easily be made faster by adding
            // yet another layer of caching indirection.
            // But since this pretty much never happens in practice, let's not go there until we
            // have metrics showing that show we need to.
            for ((entity_path, component_name), chunk_ids) in compacted_events.static_ {
                if component_name == ClearIsRecursive::name() {
                    might_require_clearing.insert(entity_path.clone());
                }

                for (key, cache) in caches_latest_at.iter() {
                    if key.entity_path == entity_path && key.component_name == component_name {
                        cache.write().pending_invalidations.insert(TimeInt::STATIC);
                    }
                }

                for (key, cache) in caches_range.iter() {
                    if key.entity_path == entity_path && key.component_name == component_name {
                        cache
                            .write()
                            .pending_invalidations
                            .extend(chunk_ids.iter().copied());
                    }
                }
            }
        }

        {
            re_tracing::profile_scope!("temporal");

            for (key, time) in compacted_events.temporal_latest_at {
                if key.component_name == ClearIsRecursive::name() {
                    might_require_clearing.insert(key.entity_path.clone());
                }

                if let Some(cache) = caches_latest_at.get(&key) {
                    let mut cache = cache.write();
                    cache.pending_invalidations.insert(time);
                }
            }

            for (key, chunk_ids) in compacted_events.temporal_range {
                if let Some(cache) = caches_range.get(&key) {
                    cache
                        .write()
                        .pending_invalidations
                        .extend(chunk_ids.iter().copied());
                }
            }
        }
    }
}