1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
use std::{
collections::{BTreeMap, BTreeSet},
sync::Arc,
};
use arrow2::array::Array as ArrowArray;
use nohash_hasher::IntMap;
use parking_lot::RwLock;
use re_chunk::{Chunk, RowId, UnitChunkShared};
use re_chunk_store::{ChunkStore, LatestAtQuery, TimeInt};
use re_log_types::EntityPath;
use re_types_core::{
components::ClearIsRecursive, Component, ComponentName, Loggable as _, SizeBytes,
};
use crate::{QueryCache, QueryCacheKey, QueryError};
// --- Public API ---
/// Compute the ordering of two data indices, making sure to deal with `STATIC` data appropriately.
//
// TODO(cmc): Maybe at some point we'll want to introduce a dedicated `DataIndex` type with
// proper ordering operators etc.
// It's harder than it sounds though -- depending on the context, you don't necessarily want index
// ordering to behave the same way.
fn compare_indices(lhs: (TimeInt, RowId), rhs: (TimeInt, RowId)) -> std::cmp::Ordering {
match (lhs, rhs) {
((TimeInt::STATIC, lhs_row_id), (TimeInt::STATIC, rhs_row_id)) => {
lhs_row_id.cmp(&rhs_row_id)
}
((_, _), (TimeInt::STATIC, _)) => std::cmp::Ordering::Less,
((TimeInt::STATIC, _), (_, _)) => std::cmp::Ordering::Greater,
_ => lhs.cmp(&rhs),
}
}
impl QueryCache {
/// Queries for the given `component_names` using latest-at semantics.
///
/// See [`LatestAtResults`] for more information about how to handle the results.
///
/// This is a cached API -- data will be lazily cached upon access.
pub fn latest_at(
&self,
query: &LatestAtQuery,
entity_path: &EntityPath,
component_names: impl IntoIterator<Item = ComponentName>,
) -> LatestAtResults {
re_tracing::profile_function!(entity_path.to_string());
let store = self.store.read();
let mut results = LatestAtResults::empty(entity_path.clone(), query.clone());
// NOTE: This pre-filtering is extremely important: going through all these query layers
// has non-negligible overhead even if the final result ends up being nothing, and our
// number of queries for a frame grows linearly with the number of entity paths.
let component_names = component_names.into_iter().filter(|component_name| {
store.entity_has_component_on_timeline(&query.timeline(), entity_path, component_name)
});
// Query-time clears
// -----------------
//
// We need to find, at query time, whether there exist a `Clear` component that should
// shadow part or all of the results that we are about to return.
//
// This is a two-step process.
//
// First, we need to find all `Clear` components that could potentially affect the returned
// results, i.e. any `Clear` component on the entity itself, or any recursive `Clear`
// component on any of its recursive parents.
//
// Then, we need to compare the index of each component result with the index of the most
// recent relevant `Clear` component that was found: if there exists a `Clear` component with
// both a _data time_ lesser or equal to the _query time_ and an index greater or equal
// than the indexed of the returned data, then we know for sure that the `Clear` shadows
// the data.
let mut max_clear_index = (TimeInt::MIN, RowId::ZERO);
{
re_tracing::profile_scope!("clears");
let potential_clears = self.might_require_clearing.read();
let mut clear_entity_path = entity_path.clone();
loop {
if !potential_clears.contains(&clear_entity_path) {
// This entity does not contain any `Clear`-related data at all, there's no
// point in running actual queries.
let Some(parent_entity_path) = clear_entity_path.parent() else {
break;
};
clear_entity_path = parent_entity_path;
continue;
}
let key = QueryCacheKey::new(
clear_entity_path.clone(),
query.timeline(),
ClearIsRecursive::name(),
);
let cache = Arc::clone(
self.latest_at_per_cache_key
.write()
.entry(key.clone())
.or_insert_with(|| Arc::new(RwLock::new(LatestAtCache::new(key.clone())))),
);
let mut cache = cache.write();
cache.handle_pending_invalidation();
if let Some(cached) =
cache.latest_at(&store, query, &clear_entity_path, ClearIsRecursive::name())
{
let found_recursive_clear = cached
.component_mono::<ClearIsRecursive>()
.and_then(Result::ok)
== Some(ClearIsRecursive(true.into()));
// When checking the entity itself, any kind of `Clear` component
// (i.e. recursive or not) will do.
//
// For (recursive) parents, we need to deserialize the data to make sure the
// recursive flag is set.
#[allow(clippy::collapsible_if)] // readability
if clear_entity_path == *entity_path || found_recursive_clear {
if let Some(index) = cached.index(&query.timeline()) {
if compare_indices(index, max_clear_index)
== std::cmp::Ordering::Greater
{
max_clear_index = index;
}
}
}
}
let Some(parent_entity_path) = clear_entity_path.parent() else {
break;
};
clear_entity_path = parent_entity_path;
}
}
for component_name in component_names {
let key = QueryCacheKey::new(entity_path.clone(), query.timeline(), component_name);
let cache = Arc::clone(
self.latest_at_per_cache_key
.write()
.entry(key.clone())
.or_insert_with(|| Arc::new(RwLock::new(LatestAtCache::new(key.clone())))),
);
let mut cache = cache.write();
cache.handle_pending_invalidation();
if let Some(cached) = cache.latest_at(&store, query, entity_path, component_name) {
// 1. A `Clear` component doesn't shadow its own self.
// 2. If a `Clear` component was found with an index greater than or equal to the
// component data, then we know for sure that it should shadow it.
if let Some(index) = cached.index(&query.timeline()) {
if component_name == ClearIsRecursive::name()
|| compare_indices(index, max_clear_index) == std::cmp::Ordering::Greater
{
results.add(component_name, index, cached);
}
}
}
}
results
}
/// Free up some RAM by forgetting the older parts of all timelines.
pub fn purge_fraction_of_ram(&mut self, fraction_to_purge: f32) {
re_tracing::profile_function!();
let mut caches = self.latest_at_per_cache_key.write();
for (_key, cache) in caches.iter_mut() {
let mut cache = cache.write();
let split_point =
(cache.per_query_time.len().saturating_sub(1) as f32 * fraction_to_purge) as usize;
if let Some(split_time) = cache.per_query_time.keys().nth(split_point).copied() {
// NOTE: By not clearing the pending invalidations set, we risk invalidating a
// future result that need not be invalidated.
// That is a much better outcome that the opposite though: not invalidating a
// future result that in fact should have been.
// See `handle_pending_invalidation` for more information.
cache.per_query_time = cache.per_query_time.split_off(&split_time);
}
}
}
}
// --- Results ---
/// Results for a latest-at query.
///
/// Use [`LatestAtResults::get`] and/or [`LatestAtResults::get_required`] in order to access
/// the results for each individual component.
#[derive(Debug)]
pub struct LatestAtResults {
/// The associated [`EntityPath`].
pub entity_path: EntityPath,
/// The query that yielded these results.
pub query: LatestAtQuery,
/// The compound index of this query result.
///
/// A latest-at query is a compound operation that gathers data from many different rows.
/// The index of that compound result corresponds to the index of most the recent row in all the
/// sub-results, as defined by time and row-id order.
pub compound_index: (TimeInt, RowId),
/// Results for each individual component.
///
/// Each [`UnitChunkShared`] MUST always contain the corresponding component.
pub components: IntMap<ComponentName, UnitChunkShared>,
}
impl LatestAtResults {
#[inline]
pub fn empty(entity_path: EntityPath, query: LatestAtQuery) -> Self {
Self {
entity_path,
query,
compound_index: (TimeInt::STATIC, RowId::ZERO),
components: Default::default(),
}
}
}
impl LatestAtResults {
#[inline]
pub fn contains(&self, component_name: &ComponentName) -> bool {
self.components.contains_key(component_name)
}
/// Returns the [`UnitChunkShared`] for the specified [`Component`].
#[inline]
pub fn get(&self, component_name: &ComponentName) -> Option<&UnitChunkShared> {
self.components.get(component_name)
}
/// Returns the [`UnitChunkShared`] for the specified [`Component`].
///
/// Returns an error if the component is not present.
#[inline]
pub fn get_required(&self, component_name: &ComponentName) -> crate::Result<&UnitChunkShared> {
if let Some(component) = self.get(component_name) {
Ok(component)
} else {
Err(QueryError::PrimaryNotFound(*component_name))
}
}
/// Returns the compound index (`(TimeInt, RowId)` pair) of the results.
#[inline]
pub fn index(&self) -> (TimeInt, RowId) {
self.compound_index
}
}
impl LatestAtResults {
#[doc(hidden)]
#[inline]
pub fn add(
&mut self,
component_name: ComponentName,
index: (TimeInt, RowId),
chunk: UnitChunkShared,
) {
debug_assert!(chunk.num_rows() == 1);
// NOTE: Since this is a compound API that actually emits multiple queries, the index of the
// final result is the most recent index among all of its components, as defined by time
// and row-id order.
if index > self.compound_index {
self.compound_index = index;
}
self.components.insert(component_name, chunk);
}
}
// --- Helpers ---
//
// Helpers for UI and other high-level/user-facing code.
//
// In particular, these replace all error handling with logs instead.
impl LatestAtResults {
// --- Batch ---
/// Returns the `RowId` for the specified component.
#[inline]
pub fn component_row_id(&self, component_name: &ComponentName) -> Option<RowId> {
self.components
.get(component_name)
.and_then(|unit| unit.row_id())
}
/// Returns the raw data for the specified component.
#[inline]
pub fn component_batch_raw(
&self,
component_name: &ComponentName,
) -> Option<Box<dyn ArrowArray>> {
self.components
.get(component_name)
.and_then(|unit| unit.component_batch_raw(component_name))
}
/// Returns the deserialized data for the specified component.
///
/// Logs at the specified `log_level` if the data cannot be deserialized.
#[inline]
pub fn component_batch_with_log_level<C: Component>(
&self,
log_level: re_log::Level,
) -> Option<Vec<C>> {
self.components
.get(&C::name())
.and_then(|unit| self.ok_or_log_err(log_level, C::name(), unit.component_batch()?))
}
/// Returns the deserialized data for the specified component.
///
/// Logs an error if the data cannot be deserialized.
#[inline]
pub fn component_batch<C: Component>(&self) -> Option<Vec<C>> {
self.component_batch_with_log_level(re_log::Level::Error)
}
/// Returns the deserialized data for the specified component.
#[inline]
pub fn component_batch_quiet<C: Component>(&self) -> Option<Vec<C>> {
self.components
.get(&C::name())
.and_then(|unit| unit.component_batch()?.ok())
}
// --- Instance ---
/// Returns the raw data for the specified component at the given instance index.
///
/// Logs at the specified `log_level` if the instance index is out of bounds.
#[inline]
pub fn component_instance_raw_with_log_level(
&self,
log_level: re_log::Level,
component_name: &ComponentName,
instance_index: usize,
) -> Option<Box<dyn ArrowArray>> {
self.components.get(component_name).and_then(|unit| {
self.ok_or_log_err(
log_level,
*component_name,
unit.component_instance_raw(component_name, instance_index)?,
)
})
}
/// Returns the raw data for the specified component at the given instance index.
///
/// Logs an error if the instance index is out of bounds.
#[inline]
pub fn component_instance_raw(
&self,
component_name: &ComponentName,
instance_index: usize,
) -> Option<Box<dyn ArrowArray>> {
self.component_instance_raw_with_log_level(
re_log::Level::Error,
component_name,
instance_index,
)
}
/// Returns the raw data for the specified component at the given instance index.
#[inline]
pub fn component_instance_raw_quiet(
&self,
component_name: &ComponentName,
instance_index: usize,
) -> Option<Box<dyn ArrowArray>> {
self.components.get(component_name).and_then(|unit| {
unit.component_instance_raw(component_name, instance_index)?
.ok()
})
}
/// Returns the deserialized data for the specified component at the given instance index.
///
/// Logs at the specified `log_level` if the data cannot be deserialized, or if the instance index
/// is out of bounds.
#[inline]
pub fn component_instance_with_log_level<C: Component>(
&self,
log_level: re_log::Level,
instance_index: usize,
) -> Option<C> {
self.components.get(&C::name()).and_then(|unit| {
self.ok_or_log_err(
log_level,
C::name(),
unit.component_instance(instance_index)?,
)
})
}
/// Returns the deserialized data for the specified component at the given instance index.
///
/// Logs an error if the data cannot be deserialized, or if the instance index is out of bounds.
#[inline]
pub fn component_instance<C: Component>(&self, instance_index: usize) -> Option<C> {
self.component_instance_with_log_level(re_log::Level::Error, instance_index)
}
/// Returns the deserialized data for the specified component at the given instance index.
///
/// Returns an error if the data cannot be deserialized, or if the instance index is out of bounds.
#[inline]
pub fn component_instance_quiet<C: Component>(&self, instance_index: usize) -> Option<C> {
self.components
.get(&C::name())
.and_then(|unit| unit.component_instance(instance_index)?.ok())
}
// --- Mono ---
/// Returns the raw data for the specified component, assuming a mono-batch.
///
/// Logs at the specified `log_level` if the underlying batch is not of unit length.
#[inline]
pub fn component_mono_raw_with_log_level(
&self,
log_level: re_log::Level,
component_name: &ComponentName,
) -> Option<Box<dyn ArrowArray>> {
self.components.get(component_name).and_then(|unit| {
self.ok_or_log_err(
log_level,
*component_name,
unit.component_mono_raw(component_name)?,
)
})
}
/// Returns the raw data for the specified component, assuming a mono-batch.
///
/// Returns an error if the underlying batch is not of unit length.
#[inline]
pub fn component_mono_raw(
&self,
component_name: &ComponentName,
) -> Option<Box<dyn ArrowArray>> {
self.component_mono_raw_with_log_level(re_log::Level::Error, component_name)
}
/// Returns the raw data for the specified component, assuming a mono-batch.
///
/// Returns an error if the underlying batch is not of unit length.
#[inline]
pub fn component_mono_raw_quiet(
&self,
component_name: &ComponentName,
) -> Option<Box<dyn ArrowArray>> {
self.components
.get(component_name)
.and_then(|unit| unit.component_mono_raw(component_name)?.ok())
}
/// Returns the deserialized data for the specified component, assuming a mono-batch.
///
/// Logs at the specified `log_level` if the data cannot be deserialized, or if the underlying batch
/// is not of unit length.
#[inline]
pub fn component_mono_with_log_level<C: Component>(
&self,
log_level: re_log::Level,
) -> Option<C> {
self.components
.get(&C::name())
.and_then(|unit| self.ok_or_log_err(log_level, C::name(), unit.component_mono()?))
}
/// Returns the deserialized data for the specified component, assuming a mono-batch.
///
/// Returns an error if the data cannot be deserialized, or if the underlying batch is not of unit length.
#[inline]
pub fn component_mono<C: Component>(&self) -> Option<C> {
self.component_mono_with_log_level(re_log::Level::Error)
}
/// Returns the deserialized data for the specified component, assuming a mono-batch.
///
/// Returns an error if the data cannot be deserialized, or if the underlying batch is not of unit length.
#[inline]
pub fn component_mono_quiet<C: Component>(&self) -> Option<C> {
self.components
.get(&C::name())
.and_then(|unit| unit.component_mono()?.ok())
}
// ---
fn ok_or_log_err<T>(
&self,
log_level: re_log::Level,
component_name: ComponentName,
res: re_chunk::ChunkResult<T>,
) -> Option<T> {
match res {
Ok(data) => Some(data),
// NOTE: It is expected for UI code to look for OOB instance indices on purpose.
// E.g. it is very common to look at index 0 in blueprint data that has been cleared.
Err(re_chunk::ChunkError::IndexOutOfBounds { len: 0, .. }) => None,
Err(err) => {
let entity_path = &self.entity_path;
let index = self.compound_index;
let err = re_error::format_ref(&err);
re_log::log_once!(
log_level,
"Couldn't read {entity_path}:{component_name} @ ({index:?}): {err}",
);
None
}
}
}
}
// --- Cached implementation ---
/// Caches the results of `LatestAt` queries for a given [`QueryCacheKey`].
pub struct LatestAtCache {
/// For debugging purposes.
pub cache_key: QueryCacheKey,
/// Organized by _query_ time.
///
/// If the key is present but has a `None` value associated with it, it means we cached the
/// lack of result.
/// This is important to do performance-wise: we run _a lot_ of queries each frame to figure
/// out what to render, and this scales linearly with the number of entity.
pub per_query_time: BTreeMap<TimeInt, LatestAtCachedChunk>,
/// These timestamps have been invalidated asynchronously.
///
/// The next time this cache gets queried, it must remove any invalidated entries accordingly.
///
/// Invalidation is deferred to query time because it is far more efficient that way: the frame
/// time effectively behaves as a natural micro-batching mechanism.
pub pending_invalidations: BTreeSet<TimeInt>,
}
impl LatestAtCache {
#[inline]
pub fn new(cache_key: QueryCacheKey) -> Self {
Self {
cache_key,
per_query_time: Default::default(),
pending_invalidations: Default::default(),
}
}
}
impl std::fmt::Debug for LatestAtCache {
#[inline]
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let Self {
cache_key,
per_query_time,
pending_invalidations: _,
} = self;
let mut strings = Vec::new();
for (query_time, unit) in per_query_time {
strings.push(format!(
"query_time={} ({})",
cache_key.timeline.typ().format_utc(*query_time),
re_format::format_bytes(unit.total_size_bytes() as _)
));
}
if strings.is_empty() {
return f.write_str("<empty>");
}
f.write_str(&strings.join("\n").replace("\n\n", "\n"))
}
}
#[derive(Clone)]
pub struct LatestAtCachedChunk {
pub unit: UnitChunkShared,
/// Is this just a reference to another entry in the cache?
pub is_reference: bool,
}
impl SizeBytes for LatestAtCachedChunk {
#[inline]
fn heap_size_bytes(&self) -> u64 {
let Self {
unit: chunk,
is_reference,
} = self;
if *is_reference {
// This chunk is just a reference to another one in the cache.
// Consider it amortized.
0
} else {
Chunk::heap_size_bytes(chunk)
}
}
}
impl SizeBytes for LatestAtCache {
#[inline]
fn heap_size_bytes(&self) -> u64 {
let Self {
cache_key: _,
per_query_time,
pending_invalidations,
} = self;
let per_query_time = per_query_time.total_size_bytes();
let pending_invalidations = pending_invalidations.total_size_bytes();
per_query_time + pending_invalidations
}
}
impl LatestAtCache {
/// Queries cached latest-at data for a single component.
pub fn latest_at(
&mut self,
store: &ChunkStore,
query: &LatestAtQuery,
entity_path: &EntityPath,
component_name: ComponentName,
) -> Option<UnitChunkShared> {
// Don't do a profile scope here, this can have a lot of overhead when executing many small queries.
//re_tracing::profile_scope!("latest_at", format!("{component_name} @ {query:?}"));
debug_assert_eq!(query.timeline(), self.cache_key.timeline);
let Self {
cache_key: _,
per_query_time,
pending_invalidations: _,
} = self;
if let Some(cached) = per_query_time.get(&query.at()) {
return Some(cached.unit.clone());
}
let ((data_time, _row_id), unit) = store
.latest_at_relevant_chunks(query, entity_path, component_name)
.into_iter()
.filter_map(|chunk| {
chunk
.latest_at(query, component_name)
.into_unit()
.and_then(|chunk| chunk.index(&query.timeline()).map(|index| (index, chunk)))
})
.max_by_key(|(index, _chunk)| *index)?;
let cached = per_query_time
.entry(data_time)
.or_insert_with(|| LatestAtCachedChunk {
unit,
is_reference: false,
})
.clone();
// NOTE: Queries that return static data are much cheaper to run, and polluting the query-time cache
// just to point to the static tables again and again is very wasteful.
if query.at() != data_time && !data_time.is_static() {
per_query_time
.entry(query.at())
.or_insert_with(|| LatestAtCachedChunk {
unit: cached.unit.clone(),
is_reference: true,
});
}
Some(cached.unit)
}
pub fn handle_pending_invalidation(&mut self) {
let Self {
cache_key: _,
per_query_time,
pending_invalidations,
} = self;
if let Some(oldest_data_time) = pending_invalidations.first() {
// Remove any data indexed by a _query time_ that's more recent than the oldest
// _data time_ that's been invalidated.
//
// Note that this data time might very well be `TimeInt::STATIC`, in which case the entire
// query-time-based index will be dropped.
let discarded = per_query_time.split_off(oldest_data_time);
// TODO(#5974): Because of non-deterministic ordering, parallelism, and most importantly lack
// of centralized query layer, it can happen that we try to handle pending invalidations
// before we even cached the associated data.
//
// If that happens, the data will be cached after we've invalidated *nothing*, and will stay
// there indefinitely since the cache doesn't have a dedicated GC yet.
//
// TL;DR: make sure to keep track of pending invalidations indefinitely as long as we
// haven't had the opportunity to actually invalidate the associated data.
pending_invalidations.retain(|data_time| {
let is_reference = discarded
.get(data_time)
.map_or(true, |chunk| chunk.is_reference);
!is_reference
});
}
}
}