1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
use std::{borrow::Cow, collections::BTreeSet, sync::Arc};
use ahash::HashMap;
use nohash_hasher::IntMap;
use parking_lot::RwLock;
use re_chunk::{Chunk, ChunkId};
use re_chunk_store::{ChunkStore, RangeQuery, TimeInt};
use re_log_types::{EntityPath, ResolvedTimeRange};
use re_types_core::{ComponentDescriptor, ComponentName, DeserializationError, SizeBytes};
use crate::{QueryCache, QueryCacheKey};
// --- Public API ---
impl QueryCache {
/// Queries for the given `component_names` using range semantics.
///
/// See [`RangeResults`] for more information about how to handle the results.
///
/// This is a cached API -- data will be lazily cached upon access.
pub fn range<'a>(
&self,
query: &RangeQuery,
entity_path: &EntityPath,
component_descrs: impl IntoIterator<Item = impl Into<Cow<'a, ComponentDescriptor>>>,
) -> RangeResults {
re_tracing::profile_function!(entity_path.to_string());
let store = self.store.read();
let mut results = RangeResults::new(query.clone());
// NOTE: This pre-filtering is extremely important: going through all these query layers
// has non-negligible overhead even if the final result ends up being nothing, and our
// number of queries for a frame grows linearly with the number of entity paths.
let component_names = component_descrs.into_iter().filter_map(|component_descr| {
let component_descr = component_descr.into();
store
.entity_has_component_on_timeline(
&query.timeline(),
entity_path,
&component_descr.component_name,
)
.then_some(component_descr.component_name)
});
for component_name in component_names {
let key = QueryCacheKey::new(entity_path.clone(), query.timeline(), component_name);
let cache = Arc::clone(
self.range_per_cache_key
.write()
.entry(key.clone())
.or_insert_with(|| Arc::new(RwLock::new(RangeCache::new(key.clone())))),
);
let mut cache = cache.write();
cache.handle_pending_invalidation();
let cached = cache.range(&store, query, entity_path, component_name);
if !cached.is_empty() {
results.add(component_name, cached);
}
}
results
}
}
// --- Results ---
/// Results for a range query.
///
/// The data is both deserialized and resolved/converted.
///
/// Use [`RangeResults::get`] or [`RangeResults::get_required`] in order to access the results for
/// each individual component.
#[derive(Debug)]
pub struct RangeResults {
/// The query that yielded these results.
pub query: RangeQuery,
/// Results for each individual component.
pub components: IntMap<ComponentName, Vec<Chunk>>,
}
impl RangeResults {
#[inline]
pub fn new(query: RangeQuery) -> Self {
Self {
query,
components: Default::default(),
}
}
#[inline]
pub fn contains(&self, component_name: &ComponentName) -> bool {
self.components.contains_key(component_name)
}
/// Returns the [`Chunk`]s for the specified `component_name`.
#[inline]
pub fn get(&self, component_name: &ComponentName) -> Option<&[Chunk]> {
self.components
.get(component_name)
.map(|chunks| chunks.as_slice())
}
/// Returns the [`Chunk`]s for the specified `component_name`.
///
/// Returns an error if the component is not present.
#[inline]
pub fn get_required(&self, component_name: &ComponentName) -> crate::Result<&[Chunk]> {
if let Some(chunks) = self.components.get(component_name) {
Ok(chunks)
} else {
Err(DeserializationError::MissingComponent {
component: *component_name,
backtrace: ::backtrace::Backtrace::new_unresolved(),
}
.into())
}
}
}
impl RangeResults {
#[doc(hidden)]
#[inline]
pub fn add(&mut self, component_name: ComponentName, chunks: Vec<Chunk>) {
self.components.insert(component_name, chunks);
}
}
// --- Cache implementation ---
/// Caches the results of `Range` queries for a given [`QueryCacheKey`].
pub struct RangeCache {
/// For debugging purposes.
pub cache_key: QueryCacheKey,
/// All the [`Chunk`]s currently cached.
///
/// See [`RangeCachedChunk`] for more information.
pub chunks: HashMap<ChunkId, RangeCachedChunk>,
/// Every [`ChunkId`] present in this set has been asynchronously invalidated.
///
/// The next time this cache gets queried, it must remove any entry matching any of these IDs.
///
/// Invalidation is deferred to query time because it is far more efficient that way: the frame
/// time effectively behaves as a natural micro-batching mechanism.
pub pending_invalidations: BTreeSet<ChunkId>,
}
impl RangeCache {
#[inline]
pub fn new(cache_key: QueryCacheKey) -> Self {
Self {
cache_key,
chunks: HashMap::default(),
pending_invalidations: BTreeSet::default(),
}
}
/// Returns the time range covered by this [`RangeCache`].
///
/// This is extremely slow (`O(n)`), don't use this for anything but debugging.
#[inline]
pub fn time_range(&self) -> ResolvedTimeRange {
self.chunks
.values()
.filter_map(|cached| {
cached
.chunk
.timelines()
.get(&self.cache_key.timeline)
.map(|time_column| time_column.time_range())
})
.fold(ResolvedTimeRange::EMPTY, |mut acc, time_range| {
acc.set_min(TimeInt::min(acc.min(), time_range.min()));
acc.set_max(TimeInt::max(acc.max(), time_range.max()));
acc
})
}
}
impl std::fmt::Debug for RangeCache {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let Self {
cache_key,
chunks,
pending_invalidations: _,
} = self;
let mut strings: Vec<String> = Vec::new();
strings.push(format!(
"{} ({})",
cache_key.timeline.typ().format_range_utc(self.time_range()),
re_format::format_bytes(chunks.total_size_bytes() as _),
));
if strings.is_empty() {
return f.write_str("<empty>");
}
f.write_str(&strings.join("\n").replace("\n\n", "\n"))
}
}
pub struct RangeCachedChunk {
pub chunk: Chunk,
/// When a `Chunk` gets cached, it is pre-processed according to the current [`QueryCacheKey`],
/// e.g. it is time-sorted on the appropriate timeline.
///
/// In the happy case, pre-processing a `Chunk` is a no-op, and the cached `Chunk` is just a
/// reference to the real one sitting in the store.
/// Otherwise, the cached `Chunk` is a full blown copy of the original one.
pub resorted: bool,
}
impl SizeBytes for RangeCachedChunk {
#[inline]
fn heap_size_bytes(&self) -> u64 {
let Self { chunk, resorted } = self;
if *resorted {
// The chunk had to be post-processed for caching.
// Its data was duplicated.
Chunk::heap_size_bytes(chunk)
} else {
// This chunk is just a reference to the one in the store.
// Consider it amortized.
0
}
}
}
impl SizeBytes for RangeCache {
#[inline]
fn heap_size_bytes(&self) -> u64 {
let Self {
cache_key,
chunks,
pending_invalidations,
} = self;
cache_key.heap_size_bytes()
+ chunks.heap_size_bytes()
+ pending_invalidations.heap_size_bytes()
}
}
impl RangeCache {
/// Queries cached range data for a single component.
pub fn range(
&mut self,
store: &ChunkStore,
query: &RangeQuery,
entity_path: &EntityPath,
component_name: ComponentName,
) -> Vec<Chunk> {
re_tracing::profile_scope!("range", format!("{query:?}"));
debug_assert_eq!(query.timeline(), self.cache_key.timeline);
// First, we forward the query as-is to the store.
//
// It's fine to run the query every time -- the index scan itself is not the costly part of a
// range query.
//
// For all relevant chunks that we find, we process them according to the [`QueryCacheKey`], and
// cache them.
let raw_chunks = store.range_relevant_chunks(query, entity_path, component_name);
for raw_chunk in &raw_chunks {
self.chunks
.entry(raw_chunk.id())
.or_insert_with(|| RangeCachedChunk {
// TODO(#7008): avoid unnecessary sorting on the unhappy path
chunk: raw_chunk
// Densify the cached chunk according to the cache key's component, which
// will speed up future arrow operations on this chunk.
.densified(component_name)
// Pre-sort the cached chunk according to the cache key's timeline.
.sorted_by_timeline_if_unsorted(&self.cache_key.timeline),
resorted: !raw_chunk.is_timeline_sorted(&self.cache_key.timeline),
});
}
// Second, we simply retrieve from the cache all the relevant `Chunk`s .
//
// Since these `Chunk`s have already been pre-processed adequately, running a range filter
// on them will be quite cheap.
raw_chunks
.into_iter()
.filter_map(|raw_chunk| self.chunks.get(&raw_chunk.id()))
.map(|cached_sorted_chunk| {
debug_assert!(cached_sorted_chunk
.chunk
.is_timeline_sorted(&query.timeline()));
let chunk = &cached_sorted_chunk.chunk;
chunk.range(query, component_name)
})
.filter(|chunk| !chunk.is_empty())
.collect()
}
#[inline]
pub fn handle_pending_invalidation(&mut self) {
re_tracing::profile_function!();
let Self {
cache_key: _,
chunks,
pending_invalidations,
} = self;
chunks.retain(|chunk_id, _chunk| !pending_invalidations.contains(chunk_id));
pending_invalidations.clear();
}
}