1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
use std::sync::mpsc;
use crate::{
texture_info::Texture2DBufferInfo,
wgpu_resources::{BufferDesc, GpuBuffer, GpuBufferPool, GpuTexture},
};
#[derive(thiserror::Error, Debug, Clone, PartialEq, Eq)]
pub enum CpuWriteGpuReadError {
#[error("Attempting to allocate an empty buffer.")]
ZeroSizeBufferAllocation,
#[error(
"Buffer is full, can't append more data! Buffer has a capacity for {buffer_capacity_elements} elements.
Tried to add {num_elements_attempted_to_add} elements, but only added {num_elements_actually_added}."
)]
BufferFull {
buffer_capacity_elements: usize,
num_elements_attempted_to_add: usize,
num_elements_actually_added: usize,
},
#[error("Target buffer has a size of {target_buffer_size}, can't write {copy_size} bytes with an offset of {destination_offset}!")]
TargetBufferTooSmall {
target_buffer_size: u64,
copy_size: u64,
destination_offset: u64,
},
#[error("Target texture doesn't fit the size of the written data to this buffer! Texture target buffer should be at most {max_copy_size} bytes, but the to be written data was {written_data_size} bytes.")]
TargetTextureBufferSizeMismatch {
max_copy_size: u64,
written_data_size: usize,
},
}
/// A sub-allocated staging buffer that can be written to.
///
/// Behaves a bit like a fixed sized `Vec` in that far it keeps track of how many elements were written to it.
///
/// We do *not* allow reading from this buffer as it is typically write-combined memory.
/// Reading would work, but it can be *very* slow.
/// For details on why, see
/// [Write combining is not your friend, by Fabian Giesen](https://fgiesen.wordpress.com/2013/01/29/write-combining-is-not-your-friend/)
/// Note that the "vec like behavior" further encourages
/// * not leaving holes
/// * keeping writes sequential
pub struct CpuWriteGpuReadBuffer<T: bytemuck::Pod + Send + Sync> {
/// Write view into the relevant buffer portion.
///
/// UNSAFE: The lifetime is transmuted to be `'static`.
/// In actuality it is tied to the lifetime of [`chunk_buffer`](#structfield.chunk_buffer)!
write_view: wgpu::BufferViewMut<'static>,
/// Range in T elements in `write_view` that haven't been written yet.
unwritten_element_range: std::ops::Range<usize>,
chunk_buffer: GpuBuffer,
byte_offset_in_chunk_buffer: wgpu::BufferAddress,
/// Marker for the type whose alignment and size requirements are honored by `write_view`.
_type: std::marker::PhantomData<T>,
}
impl<T> CpuWriteGpuReadBuffer<T>
where
T: bytemuck::Pod + Send + Sync,
{
/// Memory as slice.
///
/// Note that we can't rely on any alignment guarantees here!
/// We could offset the mapped CPU-sided memory, but then the GPU offset won't be aligned anymore.
/// There's no way we can meet conflicting alignment requirements, so we need to work with unaligned bytes instead.
/// See [this comment on this wgpu issue](https://github.com/gfx-rs/wgpu/issues/3508#issuecomment-1485044324) about what we tried before.
///
/// Once wgpu has some alignment guarantees, we might be able to use this here to allow faster copies!
/// (copies of larger blocks are likely less affected as `memcpy` typically does dynamic check/dispatching for SIMD based copies)
///
/// Do *not* make this public as we need to guarantee that the memory is *never* read from!
#[inline(always)]
fn as_mut_byte_slice(&mut self) -> &mut [u8] {
// TODO(andreas): Is this access slow given that it internally goes through a trait interface? Should we keep the pointer around?
&mut self.write_view[self.unwritten_element_range.start * std::mem::size_of::<T>()
..self.unwritten_element_range.end * std::mem::size_of::<T>()]
}
/// Pushes a slice of elements into the buffer.
///
/// If the buffer is not big enough, only the first `self.remaining_capacity()` elements are pushed before returning an error.
#[inline]
pub fn extend_from_slice(&mut self, elements: &[T]) -> Result<(), CpuWriteGpuReadError> {
if elements.is_empty() {
return Ok(());
}
re_tracing::profile_function_if!(10_000 < elements.len());
let remaining_capacity = self.remaining_capacity();
let (result, elements) = if elements.len() > remaining_capacity {
(
Err(CpuWriteGpuReadError::BufferFull {
buffer_capacity_elements: self.capacity(),
num_elements_attempted_to_add: elements.len(),
num_elements_actually_added: remaining_capacity,
}),
&elements[..remaining_capacity],
)
} else {
(Ok(()), elements)
};
let bytes = bytemuck::cast_slice(elements);
self.as_mut_byte_slice()[..bytes.len()].copy_from_slice(bytes);
self.unwritten_element_range.start += elements.len();
result
}
/// Pushes several elements into the buffer.
///
/// If the buffer is not big enough, only the first [`CpuWriteGpuReadBuffer::remaining_capacity`] elements are pushed before returning an error.
/// Otherwise, returns the number of elements pushed for convenience.
#[inline]
pub fn extend(
&mut self,
mut elements: impl ExactSizeIterator<Item = T>,
) -> Result<usize, CpuWriteGpuReadError> {
re_tracing::profile_function!();
// TODO(emilk): optimize the extend function.
// Right now it is 3-4x faster to collect to a vec first, which is crazy.
//
// Mimalloc can't align types larger than 64 bytes now and will silently ignore it.
// https://github.com/purpleprotocol/mimalloc_rust/issues/128
// Therefore, large alignments won't work with collect.
let pretend_mimalloc_aligns_correctly = false; // TODO(#5875): update mimalloc
if std::mem::align_of::<T>() <= 32 || pretend_mimalloc_aligns_correctly {
let vec: Vec<T> = elements.collect();
#[allow(clippy::dbg_macro)]
if pretend_mimalloc_aligns_correctly {
dbg!(std::any::type_name::<T>());
dbg!(std::mem::size_of::<T>());
dbg!(std::mem::align_of::<T>());
dbg!(vec.len());
dbg!(vec.as_ptr());
dbg!(vec.as_ptr() as usize % std::mem::align_of::<T>());
}
debug_assert_eq!(
vec.as_ptr() as usize % std::mem::align_of::<T>(),
0,
"Vec::collect collects into unaligned memory!"
);
self.extend_from_slice(vec.as_slice())?;
Ok(vec.len())
} else {
let num_written_before = self.num_written();
while let Some(element) = elements.next() {
if self.unwritten_element_range.start >= self.unwritten_element_range.end {
let num_elements_actually_added = self.num_written() - num_written_before;
return Err(CpuWriteGpuReadError::BufferFull {
buffer_capacity_elements: self.capacity(),
num_elements_attempted_to_add: num_elements_actually_added
+ elements.count()
+ 1,
num_elements_actually_added,
});
}
self.as_mut_byte_slice()[..std::mem::size_of::<T>()]
.copy_from_slice(bytemuck::bytes_of(&element));
self.unwritten_element_range.start += 1;
}
Ok(self.num_written() - num_written_before)
}
}
/// Fills the buffer with n instances of an element.
///
/// If the buffer is not big enough, only the first `self.remaining_capacity()` elements are pushed before returning an error.
pub fn add_n(&mut self, element: T, num_elements: usize) -> Result<(), CpuWriteGpuReadError> {
if num_elements == 0 {
return Ok(());
}
re_tracing::profile_function_if!(10_000 < num_elements);
let remaining_capacity = self.remaining_capacity();
let (result, num_elements) = if num_elements > remaining_capacity {
(
Err(CpuWriteGpuReadError::BufferFull {
buffer_capacity_elements: self.capacity(),
num_elements_attempted_to_add: num_elements,
num_elements_actually_added: remaining_capacity,
}),
remaining_capacity,
)
} else {
(Ok(()), num_elements)
};
let mut offset = 0;
let buffer_bytes = self.as_mut_byte_slice();
let element_bytes = bytemuck::bytes_of(&element);
for _ in 0..num_elements {
let end = offset + std::mem::size_of::<T>();
buffer_bytes[offset..end].copy_from_slice(element_bytes);
offset = end;
}
self.unwritten_element_range.start += num_elements;
result
}
/// Pushes a single element into the buffer and advances the write pointer.
///
/// Returns an error if the data no longer fits into the buffer.
#[inline]
pub fn push(&mut self, element: T) -> Result<(), CpuWriteGpuReadError> {
if self.remaining_capacity() == 0 {
return Err(CpuWriteGpuReadError::BufferFull {
buffer_capacity_elements: self.capacity(),
num_elements_attempted_to_add: 1,
num_elements_actually_added: 0,
});
}
self.as_mut_byte_slice()[..std::mem::size_of::<T>()]
.copy_from_slice(bytemuck::bytes_of(&element));
self.unwritten_element_range.start += 1;
Ok(())
}
/// True if no elements have been pushed into the buffer so far.
#[inline]
pub fn is_empty(&self) -> bool {
self.unwritten_element_range.start == 0
}
/// The number of elements pushed into the buffer so far.
#[inline]
pub fn num_written(&self) -> usize {
self.unwritten_element_range.start
}
/// The number of elements that can still be pushed into the buffer.
#[inline]
pub fn remaining_capacity(&self) -> usize {
self.unwritten_element_range.end - self.unwritten_element_range.start
}
/// Total number of elements that the buffer can hold.
pub fn capacity(&self) -> usize {
self.unwritten_element_range.end
}
/// Copies all so far written data to the first layer of a 2D texture.
///
/// Assumes that the buffer consists of as-tightly-packed-as-possible rows of data.
/// (taking into account required padding as specified by [`wgpu::COPY_BYTES_PER_ROW_ALIGNMENT`])
///
/// Fails if the buffer size is not sufficient to fill the entire texture.
#[allow(unused)]
pub fn copy_to_texture2d_entire_first_layer(
self,
encoder: &mut wgpu::CommandEncoder,
destination: &GpuTexture,
) -> Result<(), CpuWriteGpuReadError> {
self.copy_to_texture2d(
encoder,
wgpu::ImageCopyTexture {
texture: &destination.texture,
mip_level: 0,
origin: wgpu::Origin3d::ZERO,
aspect: wgpu::TextureAspect::All,
},
destination.texture.size(),
)
}
/// Copies all so far written data to a rectangle on a single 2D texture layer.
///
/// Assumes that the buffer consists of as-tightly-packed-as-possible rows of data.
/// (taking into account required padding as specified by [`wgpu::COPY_BYTES_PER_ROW_ALIGNMENT`])
///
/// Implementation note:
/// Does 2D-only entirely for convenience as it greatly simplifies the input parameters.
pub fn copy_to_texture2d(
self,
encoder: &mut wgpu::CommandEncoder,
destination: wgpu::ImageCopyTexture<'_>,
copy_size: wgpu::Extent3d,
) -> Result<(), CpuWriteGpuReadError> {
let buffer_info = Texture2DBufferInfo::new(destination.texture.format(), copy_size);
// Validate that we stay within the written part of the slice (wgpu can't fully know our intention here, so we have to check).
// This is a bit of a leaky check since we haven't looked at copy_size which may limit the amount of memory we need.
if (buffer_info.buffer_size_padded as usize) < self.num_written() * std::mem::size_of::<T>()
{
return Err(CpuWriteGpuReadError::TargetTextureBufferSizeMismatch {
max_copy_size: buffer_info.buffer_size_padded,
written_data_size: self.num_written() * std::mem::size_of::<T>(),
});
}
encoder.copy_buffer_to_texture(
wgpu::ImageCopyBuffer {
buffer: &self.chunk_buffer,
layout: wgpu::ImageDataLayout {
offset: self.byte_offset_in_chunk_buffer,
bytes_per_row: Some(buffer_info.bytes_per_row_padded),
rows_per_image: None,
},
},
destination,
copy_size,
);
Ok(())
}
/// Copies the entire buffer to another buffer and drops it.
pub fn copy_to_buffer(
self,
encoder: &mut wgpu::CommandEncoder,
destination: &GpuBuffer,
destination_offset: wgpu::BufferAddress,
) -> Result<(), CpuWriteGpuReadError> {
let copy_size = (std::mem::size_of::<T>() * self.unwritten_element_range.start) as u64;
// Wgpu does validation as well, but we want to be able to track this error right away.
if copy_size > destination_offset + destination.size() {
return Err(CpuWriteGpuReadError::TargetBufferTooSmall {
target_buffer_size: destination.size(),
copy_size,
destination_offset,
});
}
encoder.copy_buffer_to_buffer(
&self.chunk_buffer,
self.byte_offset_in_chunk_buffer,
destination,
destination_offset,
copy_size,
);
Ok(())
}
}
/// Internal chunk of the staging belt.
struct Chunk {
buffer: GpuBuffer,
/// Starting at this offset the buffer is unused.
unused_offset: wgpu::BufferAddress,
}
impl Chunk {
fn remaining_capacity(&self) -> u64 {
self.buffer.size() - self.unused_offset
}
/// Caller needs to make sure that there is enough space.
fn allocate<T: bytemuck::Pod + Send + Sync>(
&mut self,
num_elements: usize,
size_in_bytes: u64,
) -> CpuWriteGpuReadBuffer<T> {
debug_assert!(num_elements * std::mem::size_of::<T>() <= size_in_bytes as usize);
let byte_offset_in_chunk_buffer = self.unused_offset;
let end_offset = byte_offset_in_chunk_buffer + size_in_bytes;
debug_assert!(byte_offset_in_chunk_buffer % CpuWriteGpuReadBelt::MIN_OFFSET_ALIGNMENT == 0);
debug_assert!(end_offset <= self.buffer.size());
let buffer_slice = self.buffer.slice(byte_offset_in_chunk_buffer..end_offset);
let write_view = buffer_slice.get_mapped_range_mut();
self.unused_offset = end_offset;
#[allow(unsafe_code)]
// SAFETY:
// write_view has a lifetime dependency on the chunk's buffer - internally it holds a pointer to it!
//
// To ensure that the buffer is still around, we put the ref counted buffer handle into the struct with it.
// Additionally, the buffer pool needs to ensure:
// * it can't drop buffers if there's still users
// -> We assert on that
// * buffers are never moved in memory
// -> buffers are always owned by the pool and are always Arc.
// This means it not allowed to move the buffer out.
// (We could make them Pin<Arc<>> but this complicates things inside the BufferPool)
let write_view = unsafe {
std::mem::transmute::<wgpu::BufferViewMut<'_>, wgpu::BufferViewMut<'static>>(write_view)
};
CpuWriteGpuReadBuffer {
chunk_buffer: self.buffer.clone(),
byte_offset_in_chunk_buffer,
write_view,
unwritten_element_range: 0..num_elements,
_type: std::marker::PhantomData,
}
}
}
/// Efficiently performs many buffer writes by sharing and reusing temporary buffers.
///
/// Internally it uses a ring-buffer of staging buffers that are sub-allocated.
///
/// Based on to [`wgpu::util::StagingBelt`](https://github.com/gfx-rs/wgpu/blob/a420e453c3d9c93dfb1a8526bf11c000d895c916/wgpu/src/util/belt.rs)
/// However, there are some important differences:
/// * can create buffers without yet knowing the target copy location
/// * lifetime of returned buffers is independent of the [`CpuWriteGpuReadBelt`] (allows working with several in parallel!)
/// * use of `re_renderer`'s resource pool
/// * handles alignment in a defined manner
/// (see this as of writing open wgpu issue on [Alignment guarantees for mapped buffers](https://github.com/gfx-rs/wgpu/issues/3508))
pub struct CpuWriteGpuReadBelt {
/// Minimum size for new buffers.
chunk_size: u64,
/// Chunks which are CPU write at the moment.
active_chunks: Vec<Chunk>,
/// Chunks which are GPU read at the moment.
///
/// I.e. they have scheduled transfers already; they are unmapped and one or more
/// command encoder has one or more `copy_buffer_to_buffer` commands with them
/// as source.
closed_chunks: Vec<Chunk>,
/// Chunks that are back from the GPU and ready to be mapped for write and put
/// into `active_chunks`.
free_chunks: Vec<Chunk>,
/// When closed chunks are mapped again, the map callback sends them here.
///
/// Note that we shouldn't use `SyncSender` since this can block the `Sender` if a buffer is full,
/// which means that in a single threaded situation (Web!) we might deadlock.
sender: mpsc::Sender<Chunk>,
/// Free chunks are received here to be put on `self.free_chunks`.
receiver: mpsc::Receiver<Chunk>,
}
impl CpuWriteGpuReadBelt {
/// All allocations of this allocator will be aligned to at least this size.
///
/// Requiring a minimum alignment means we need to pad less often.
/// Also, it has the potential of making memcpy operations faster.
///
/// Needs to be larger or equal than [`wgpu::MAP_ALIGNMENT`], [`wgpu::COPY_BUFFER_ALIGNMENT`]
/// and the largest possible texel block footprint (since offsets for texture copies require this)
///
/// For alignment requirements in `WebGPU` in general, refer to
/// [the specification on alignment-class limitations](https://www.w3.org/TR/webgpu/#limit-class-alignment)
///
/// Note that this does NOT mean that the CPU memory has *any* alignment.
/// See this issue about [lack of CPU memory alignment](https://github.com/gfx-rs/wgpu/issues/3508) in wgpu/WebGPU.
const MIN_OFFSET_ALIGNMENT: u64 = 16;
/// Create a cpu-write & gpu-read staging belt.
///
/// The `chunk_size` is the unit of internal buffer allocation; writes will be
/// sub-allocated within each chunk. Therefore, for optimal use of memory, the
/// chunk size should be:
///
/// * larger than the largest single [`CpuWriteGpuReadBelt::allocate`] operation;
/// * 1-4 times less than the total amount of data uploaded per submission
/// (per [`CpuWriteGpuReadBelt::before_queue_submit()`]); and
/// * bigger is better, within these bounds.
///
/// TODO(andreas): Adaptive chunk sizes
/// TODO(andreas): Shrinking after usage spikes?
pub fn new(chunk_size: wgpu::BufferSize) -> Self {
static_assertions::const_assert!(
wgpu::MAP_ALIGNMENT <= CpuWriteGpuReadBelt::MIN_OFFSET_ALIGNMENT
);
static_assertions::const_assert!(
wgpu::COPY_BUFFER_ALIGNMENT <= CpuWriteGpuReadBelt::MIN_OFFSET_ALIGNMENT
);
// Largest uncompressed texture format (btw. many compressed texture format have the same block size!)
debug_assert!(
wgpu::TextureFormat::Rgba32Uint
.block_copy_size(None)
.unwrap() as u64
<= Self::MIN_OFFSET_ALIGNMENT
);
let (sender, receiver) = mpsc::channel();
Self {
chunk_size: wgpu::util::align_to(chunk_size.get(), Self::MIN_OFFSET_ALIGNMENT),
active_chunks: Vec::new(),
closed_chunks: Vec::new(),
free_chunks: Vec::new(),
sender,
receiver,
}
}
/// Allocates a cpu writable buffer for `num_elements` instances of type `T`.
///
/// The buffer will be aligned to T's alignment, but no less than [`Self::MIN_OFFSET_ALIGNMENT`].
pub fn allocate<T: bytemuck::Pod + Send + Sync>(
&mut self,
device: &wgpu::Device,
buffer_pool: &GpuBufferPool,
num_elements: usize,
) -> Result<CpuWriteGpuReadBuffer<T>, CpuWriteGpuReadError> {
if num_elements == 0 {
return Err(CpuWriteGpuReadError::ZeroSizeBufferAllocation);
}
re_tracing::profile_function!();
debug_assert!(num_elements > 0, "Cannot allocate zero-sized buffer");
// Potentially overestimate size with Self::MIN_ALIGNMENT, see Self::MIN_ALIGNMENT doc string.
let size = wgpu::util::align_to(
(std::mem::size_of::<T>() * num_elements) as wgpu::BufferAddress,
Self::MIN_OFFSET_ALIGNMENT,
);
// Try to find space in any of the active chunks first.
let mut chunk = if let Some(index) = self
.active_chunks
.iter_mut()
.position(|chunk| chunk.remaining_capacity() >= size)
{
self.active_chunks.swap_remove(index)
} else {
self.receive_chunks(); // ensure self.free_chunks is up to date
// Use a free chunk if possible, fall back to creating a new one if necessary.
if let Some(index) = self
.free_chunks
.iter()
.position(|chunk| chunk.remaining_capacity() >= size)
{
self.free_chunks.swap_remove(index)
} else {
// Allocation might be bigger than a chunk!
let buffer_size =
wgpu::util::align_to(self.chunk_size.max(size), Self::MIN_OFFSET_ALIGNMENT);
re_log::trace!(
"Allocating new CpuWriteGpuReadBelt chunk of size {:.1} MiB",
buffer_size as f32 / (1024.0 * 1024.0)
);
let buffer = buffer_pool.alloc(
device,
&BufferDesc {
label: "CpuWriteGpuReadBelt chunk buffer".into(),
size: buffer_size,
usage: wgpu::BufferUsages::MAP_WRITE | wgpu::BufferUsages::COPY_SRC,
mapped_at_creation: true,
},
);
Chunk {
buffer,
unused_offset: 0,
}
}
};
let cpu_buffer_view = chunk.allocate(num_elements, size);
self.active_chunks.push(chunk);
Ok(cpu_buffer_view)
}
/// Prepare currently mapped buffers for use in a submission.
///
/// This must be called before the command encoder(s) used in [`CpuWriteGpuReadBuffer`] copy operations are submitted.
///
/// At this point, all the partially used staging buffers are closed (cannot be used for
/// further writes) until after [`CpuWriteGpuReadBelt::after_queue_submit`] is called *and* the GPU is done
/// copying the data from them.
pub fn before_queue_submit(&mut self) {
re_tracing::profile_function!();
// This would be a great usecase for persistent memory mapping, i.e. mapping without the need to unmap
// https://github.com/gfx-rs/wgpu/issues/1468
// However, WebGPU does not support this!
for chunk in self.active_chunks.drain(..) {
chunk.buffer.unmap();
self.closed_chunks.push(chunk);
}
}
/// Recall all of the closed buffers back to be reused.
///
/// This must only be called after the command encoder(s) used in [`CpuWriteGpuReadBuffer`]
/// copy operations are submitted. Additional calls are harmless.
/// Not calling this as soon as possible may result in increased buffer memory usage.
pub fn after_queue_submit(&mut self) {
re_tracing::profile_function!();
self.receive_chunks();
let sender = &self.sender;
for chunk in self.closed_chunks.drain(..) {
let sender = sender.clone();
chunk
.buffer
.clone()
.slice(..)
.map_async(wgpu::MapMode::Write, move |_| {
let _ = sender.send(chunk);
});
}
}
/// Move all chunks that the GPU is done with (and are now mapped again)
/// from `self.receiver` to `self.free_chunks`.
fn receive_chunks(&mut self) {
while let Ok(mut chunk) = self.receiver.try_recv() {
chunk.unused_offset = 0;
self.free_chunks.push(chunk);
}
}
}
impl std::fmt::Debug for CpuWriteGpuReadBelt {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("CpuWriteGpuReadBelt")
.field("chunk_size", &self.chunk_size)
.field("active_chunks", &self.active_chunks.len())
.field("closed_chunks", &self.closed_chunks.len())
.field("free_chunks", &self.free_chunks.len())
.finish_non_exhaustive()
}
}