1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
use bytemuck::Pod;
use crate::{
wgpu_resources::{self, GpuTexture},
DebugLabel, RenderContext,
};
use super::{CpuWriteGpuReadBuffer, CpuWriteGpuReadError};
#[derive(thiserror::Error, Debug, PartialEq, Eq)]
pub enum DataTextureSourceWriteError {
#[error(
"Reached maximum number of elements for a data texture of {max_num_elements} elements.
Tried to add {num_elements_attempted_to_add} elements, but only added {num_elements_actually_added}."
)]
ReachedMaximumNumberOfElements {
max_num_elements: usize,
num_elements_attempted_to_add: usize,
num_elements_actually_added: usize,
},
#[error(transparent)]
CpuWriteGpuReadError(#[from] crate::CpuWriteGpuReadError),
}
/// Utility for writing data to a dynamically sized "data textures".
///
/// For WebGL compatibility we sometimes have to use textures instead of buffers.
/// We call these textures "data textures".
/// This construct allows to write data directly to gpu readable memory which
/// then upon finishing is automatically copied into an appropriately sized
/// texture which receives all data written to [`DataTextureSource`].
/// Each texel in the data texture represents a single element of the type `T`.
///
/// This is implemented by dynamically allocating cpu-write-gpu-read buffers from the
/// central [`super::CpuWriteGpuReadBelt`] and copying all of them to the texture in the end.
pub struct DataTextureSource<'a, T: Pod + Send + Sync> {
ctx: &'a RenderContext, // TODO(andreas): Don't dependency inject, layers on top of this can do that.
/// Buffers that need to be transferred to the data texture in the end.
///
/// We have two options on how to deal with buffer allocation and filling:
///
/// 1. fill the last buffer to its maximum capacity before starting writing to the next,
/// allow arbitrary amount of empty buffers
/// -> Pro: makes the final gpu copies easy, we don't have to juggle weird offsets and several copies per buffer!
/// -> Con: may need to spread writes over several buffers
/// 2. create a new buffer whenever a write doesn't fully fit into the active buffer,
/// even if the last buffer has some remaining capacity, allow arbitrary amount of half-filled buffers
/// -> Pro: All writes can go to a single buffer, which is simpler & faster.
/// -> Con: We waste space and copying to the texture is harder
///
/// We're going with option (1)!
///
/// This means that there might be 'n' full buffers followed by a single active buffer, followed by 'm' empty buffers.
buffers: Vec<CpuWriteGpuReadBuffer<T>>,
/// Buffer in which data is currently written.
///
/// Between all public calls:
/// * all buffers before are full
/// * all buffers after are empty (if any)
/// * the buffer at this index either does not exist or has remaining capacity
///
/// At the end of any operation that adds new elements, call
/// `ensure_active_buffer_invariant_after_adding_elements` to ensure this invariant.
active_buffer_index: usize,
}
impl<'a, T: Pod + Send + Sync> DataTextureSource<'a, T> {
/// Creates a new `DataTextureSource` with the given `RenderContext`.
///
/// This operation itself will not allocate any memory, empty `DataTextureSource` are not a concern.
pub fn new(ctx: &'a RenderContext) -> Self {
Self {
ctx,
buffers: Vec::new(),
active_buffer_index: 0,
}
}
/// Whether no elements have been written at all.
#[inline]
pub fn is_empty(&self) -> bool {
self.buffers
.first()
.map_or(true, |first_buffer| first_buffer.is_empty())
}
/// The number of elements written so far.
#[inline]
pub fn len(&self) -> usize {
self.buffers
.iter()
.take(self.active_buffer_index + 1)
.map(|b| b.num_written())
.sum()
}
/// The number of elements that can be written without allocating more memory.
#[inline]
#[allow(unused)]
pub fn capacity(&self) -> usize {
self.buffers.iter().map(|b| b.capacity()).sum()
}
/// The number of elements that can be written without allocating more memory.
#[inline]
pub fn remaining_capacity(&self) -> usize {
self.buffers
.iter()
.skip(self.active_buffer_index)
.map(|b| b.remaining_capacity())
.sum()
}
/// Ensure invariant that the active buffer has some remaining capacity or is the next buffer that needs to be allocated.
///
/// Since elements were just added to the active buffer, this function assumes that the `active_buffer_index` points to a valid buffer.
#[inline]
fn ensure_active_buffer_invariant_after_adding_elements(&mut self) {
debug_assert!(
self.active_buffer_index < self.len(),
"Active buffer index was expected to point at a valid buffer."
);
if self.buffers[self.active_buffer_index].remaining_capacity() == 0 {
self.active_buffer_index += 1;
}
// Note that if we're *very* unlucky there might be a lot of unused buffers.
// This happens only if there's quadratic growing `reserve` calls without any writes.
debug_assert!(self.buffers.len() >= self.active_buffer_index);
// If the active buffer exists, it must have remaining capacity.
debug_assert!(
self.buffers.len() == self.active_buffer_index
|| self.buffers[self.active_buffer_index].remaining_capacity() > 0
);
// The buffer before the active buffer must be full.
debug_assert!(
self.active_buffer_index == 0
|| self.buffers[self.active_buffer_index - 1].remaining_capacity() == 0
);
}
/// Ensures that there's space internally for at least `num_elements` more elements.
///
/// Returns the number of elements that are currently reserved.
/// This value is *smaller* than the requested number of elements if the maximum number of
/// elements that can be stored is reached, see [`max_num_elements_per_data_texture`].
///
/// Creating new buffers is a relatively expensive operation, so it's best to
/// reserve gratuitously and often. Ideally, you know exactly how many elements you're going to write and reserve
/// accordingly at the start.
///
/// If there's no more space, a new buffer is allocated such that:
/// * have a total capacity for at least as many elements as requested, clamping total size to [`max_num_elements_per_data_texture`]
/// * be at least double the size of the last buffer
/// * keep it easy to copy to textures by always being a multiple of the maximum row size we use for data textures
/// -> this massively simplifies the buffer->texture copy logic!
pub fn reserve(&mut self, num_elements: usize) -> Result<usize, CpuWriteGpuReadError> {
let remaining_capacity = self.remaining_capacity();
if remaining_capacity >= num_elements {
return Ok(remaining_capacity);
}
let max_texture_dimension_2d = self.ctx.device.limits().max_texture_dimension_2d;
let last_buffer_size = self.buffers.last().map_or(0, |b| b.capacity());
let new_buffer_size = (num_elements - remaining_capacity)
.max(last_buffer_size * 2)
.next_multiple_of(max_data_texture_width(max_texture_dimension_2d) as usize)
.min(max_num_elements_per_data_texture(max_texture_dimension_2d) - self.capacity());
if new_buffer_size > 0 {
self.buffers
.push(self.ctx.cpu_write_gpu_read_belt.lock().allocate(
&self.ctx.device,
&self.ctx.gpu_resources.buffers,
new_buffer_size,
)?);
}
Ok(remaining_capacity + new_buffer_size)
}
fn error_on_clamped_write(
&self,
num_elements_attempted_to_add: usize,
num_elements_actually_added: usize,
) -> Result<(), DataTextureSourceWriteError> {
if num_elements_actually_added < num_elements_attempted_to_add {
Err(
DataTextureSourceWriteError::ReachedMaximumNumberOfElements {
max_num_elements: max_num_elements_per_data_texture(
self.ctx.device.limits().max_texture_dimension_2d,
),
num_elements_attempted_to_add,
num_elements_actually_added,
},
)
} else {
Ok(())
}
}
/// Pushes a slice of elements into the data texture.
pub fn extend_from_slice(&mut self, elements: &[T]) -> Result<(), DataTextureSourceWriteError> {
if elements.is_empty() {
return Ok(());
}
re_tracing::profile_function_if!(10_000 < elements.len());
let num_elements_available = self.reserve(elements.len())?;
let total_elements_actually_added = num_elements_available.min(elements.len());
let mut remaining_elements = &elements[..total_elements_actually_added];
loop {
let write_result =
self.buffers[self.active_buffer_index].extend_from_slice(remaining_elements);
// `extend_from_slice` is documented to write as many elements as possible, so we can just continue with the next buffer,
// if we ran out of space!
if let Err(CpuWriteGpuReadError::BufferFull {
num_elements_actually_added,
..
}) = write_result
{
remaining_elements = &remaining_elements[num_elements_actually_added..];
self.active_buffer_index += 1; // Due to the prior `reserve` call we know that there's more buffers!
} else {
self.ensure_active_buffer_invariant_after_adding_elements();
write_result?;
return self.error_on_clamped_write(elements.len(), total_elements_actually_added);
}
}
}
/// Fills the data texture with n instances of an element.
pub fn add_n(
&mut self,
element: T,
num_elements: usize,
) -> Result<(), DataTextureSourceWriteError> {
if num_elements == 0 {
return Ok(());
}
re_tracing::profile_function_if!(10_000 < num_elements);
let num_elements_available = self.reserve(num_elements)?;
let total_elements_actually_added = num_elements_available.min(num_elements);
let mut num_elements_remaining = total_elements_actually_added;
loop {
let write_result =
self.buffers[self.active_buffer_index].add_n(element, num_elements_remaining);
// `fill_n` is documented to write as many elements as possible, so we can just continue with the next buffer,
// if we ran out of space!
if let Err(CpuWriteGpuReadError::BufferFull {
num_elements_actually_added,
..
}) = write_result
{
num_elements_remaining -= num_elements_actually_added;
self.active_buffer_index += 1; // Due to the prior `reserve` call we know that there's more buffers!
} else {
self.ensure_active_buffer_invariant_after_adding_elements();
write_result?;
return self.error_on_clamped_write(num_elements, total_elements_actually_added);
}
}
}
#[inline]
pub fn push(&mut self, element: T) -> Result<(), DataTextureSourceWriteError> {
if self.reserve(1)? < 1 {
return self.error_on_clamped_write(1, 0);
}
self.buffers[self.active_buffer_index].push(element)?;
self.ensure_active_buffer_invariant_after_adding_elements();
Ok(())
}
fn data_texture_size(&self, max_texture_dimension_2d: u32) -> wgpu::Extent3d {
let texel_size_in_bytes = std::mem::size_of::<T>() as u32;
let num_texels = self.len();
debug_assert!(num_texels <= max_num_elements_per_data_texture(max_texture_dimension_2d));
// Our data textures are usually accessed in a linear fashion, so ideally we'd be using a 1D texture.
// However, 1D textures are very limited in size on many platforms, we have to use 2D textures instead.
// 2D textures perform a lot better when their dimensions are powers of two, so we'll strictly stick to that even
// when it seems to cause memory overhead.
// We fill row by row. With the power-of-two requirement, this is the optimal strategy:
// if there were a texture with less padding that uses half the width,
// then we'd need to increase the height. We can't increase without doubling it, thus creating a texture
// with the exact same mount of padding as before.
let max_data_texture_width = max_data_texture_width(max_texture_dimension_2d);
let width = if num_texels < max_data_texture_width as usize {
num_texels
.next_power_of_two()
// For too few number of written texels, or too small texels we might need to increase the size to stay
// above a row **byte** size of `wgpu::COPY_BYTES_PER_ROW_ALIGNMENT`.
// Note that this implies that for very large texels, we need less wide textures to stay above this limit.
// (width is in number of texels, but alignment cares about bytes!)
.next_multiple_of(
(wgpu::COPY_BYTES_PER_ROW_ALIGNMENT / texel_size_in_bytes) as usize,
) as u32
} else {
max_data_texture_width
};
let height = num_texels.div_ceil(width as usize);
debug_assert!(height <= max_texture_dimension_2d as usize); // Texel count should have been clamped accordingly already!
wgpu::Extent3d {
width,
height: height as u32,
depth_or_array_layers: 1,
}
}
/// Schedules copies of all previous writes to this `DataTextureSource` to a `GpuTexture`.
///
/// The format has to be uncompressed, not a depth/stencil format and have the exact same block size of the size of type `T`.
/// The resulting `GpuTexture` is ready to be bound as a data texture in a shader.
pub fn finish(
self,
texture_format: wgpu::TextureFormat,
texture_label: impl Into<DebugLabel>,
) -> Result<GpuTexture, CpuWriteGpuReadError> {
re_tracing::profile_function!();
debug_assert!(!texture_format.has_depth_aspect());
debug_assert!(!texture_format.has_stencil_aspect());
debug_assert!(!texture_format.is_compressed());
debug_assert_eq!(
texture_format
.block_copy_size(None)
.expect("Depth/stencil formats are not supported as data textures"),
std::mem::size_of::<T>() as u32,
);
let texture_size =
self.data_texture_size(self.ctx.device.limits().max_texture_dimension_2d);
let data_texture = self.ctx.gpu_resources.textures.alloc(
&self.ctx.device,
&wgpu_resources::TextureDesc {
label: texture_label.into(),
size: texture_size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: texture_format,
usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
},
);
let texture_width = texture_size.width as usize;
// Copy all buffers to the texture.
let mut current_row = 0;
let mut encoder = self.ctx.active_frame.before_view_builder_encoder.lock();
for mut buffer in self.buffers.into_iter().take(self.active_buffer_index + 1) {
// Buffer sizes were chosen such that they will always copy full rows!
debug_assert!(buffer.capacity() % texture_width == 0);
// The last buffer might need padding to fill a full row.
let num_written = buffer.num_written();
let num_elements_padding =
buffer.num_written().next_multiple_of(texture_width) - num_written;
buffer.add_n(T::zeroed(), num_elements_padding)?;
let num_rows = buffer.num_written() / texture_width;
buffer.copy_to_texture2d(
encoder.get(),
wgpu::ImageCopyTexture {
texture: &data_texture.texture,
mip_level: 0,
origin: wgpu::Origin3d {
x: 0,
y: current_row,
z: 0,
},
aspect: wgpu::TextureAspect::All,
},
wgpu::Extent3d {
height: num_rows as u32,
..texture_size
},
)?;
current_row += num_rows as u32;
}
Ok(data_texture)
}
}
/// Maximum width for data textures.
#[inline]
fn max_data_texture_width(max_texture_dimension_2d: u32) -> u32 {
// We limit the data texture width to 16384 or whatever smaller value is supported but the device.
//
// If we make buffers always a multiple of this width, we can do all buffer copies in a single copy!
//
// But wait! If we're using this as the minimum buffer size, isn't that too big?
// 16384 * float4 (worst case) = 256KiB.
// Keep in mind that weaker hardware will have 8192 max width.
// Also note, that many of our textures use 4 & 8 byte formats.
// So while this is still a considerable amount of memory when used for very small data textures
// it's not as bad as it seems.
// Given how much it simplifies to keep buffers a multiple of the texture width,
// this seems to be a reasonable trade-off.
(max_texture_dimension_2d).min(16384)
}
/// Maximum number of elements that can be written to a single data texture.
#[inline]
fn max_num_elements_per_data_texture(max_texture_dimension_2d: u32) -> usize {
let max_width = max_data_texture_width(max_texture_dimension_2d) as usize;
let max_height = max_texture_dimension_2d as usize;
max_width * max_height
}