1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
//! Outlines as postprocessing effect.
//!
//! This module provides the [`OutlineMaskProcessor`] which handles render passes around outlines.
//! The outlines themselves are evaluated and drawn by the main compositor.
//!
//! There are two channels (in shader code referred to as A and B) that are handled simultaneously.
//! For configuring the look of the outline refer to [`OutlineConfig`].
//! For setting outlines for an individual primitive from another [`crate::renderer::Renderer`]/[`crate::renderer::DrawData`],
//! check for [`OutlineMaskPreference`] settings on that primitive.
//!
//! How it works:
//! =============
//! The basic approach follows closely @bgolus' [blog post](https://bgolus.medium.com/the-quest-for-very-wide-outlines-ba82ed442cd9)
//! on jump-flooding based outlines.
//!
//! Quick recap & overview:
//! * Render scene into a mask texture
//! * Extract a contour from the mask texture, for each contour pixel write the position in the (to-be) voronoi texture.
//! * in our case we extract all pixels at which the mask changes (details below)
//! * Jump-flooding iterations: For each pixel in the voronoi texture,
//! sample the current pixel and an 8-neighborhood at a certain, for each pass decreasing, distance and write out the closest position seen so far.
//! * This is repeated for `log2(outline_width)` iterations.
//! * During composition, extract an outline by checking the distance to the closest contour using the voronoi texture
//!
//! What makes our implementation (a little bit) special:
//! -----------------------------------------------------
//! In short: We have more complex outline relationships but do so without additional passes!
//!
//! * Different objects may have outlines between each other
//! * This is achieved by making the mask texture a 2 channel texture, where each channel is a different 8bit object id.
//! * object ids are arbitrary and only for the purpose of distinguishing between outlines
//! * Since we now no longer can resolve anti-aliasing in a straight forward manner (can't blend object ids!),
//! * This implies a custom resolve during contour extraction!
//! * It seems to force our hand towards outlines that extend inwards:
//! * For each channel A & B we only get a single voronoi texture (fused into one 4 channel texture),
//! meaning that we only have a single unsigned distance to the closest contour.
//! If we don't want to ignore objects drawn upon each other, we need to compute the distance to any contour (== pixel where object id changes).
//! * It might be possible to mask out inner outlines during composition, but it's not clear what the exact masking rules are for this.
//! * We use two channels (A and B) for outlines, so that we can have two independent outlines (even for the same object if desired)
//! * We do this in a single pass by using a 2 channel texture on the mask (object id A, object id B) and
//! a 4 channel texture on the voronoi texture (xy coordinates for A, xy coordinates for B)
//!
//! More details can be found in the respective shader code.
//!
use crate::{
allocator::create_and_fill_uniform_buffer_batch,
config::DeviceTier,
include_shader_module,
renderer::screen_triangle_vertex_shader,
view_builder::ViewBuilder,
wgpu_resources::{
BindGroupDesc, BindGroupEntry, BindGroupLayoutDesc, GpuBindGroup, GpuBindGroupLayoutHandle,
GpuRenderPipelineHandle, GpuRenderPipelinePoolAccessor, GpuTexture, PipelineLayoutDesc,
PoolError, RenderPipelineDesc, SamplerDesc,
},
DebugLabel, RenderContext,
};
use smallvec::smallvec;
/// What outline (if any) should be drawn.
///
/// Outlines have two channels (referred to as A and B).
/// Each channel can distinguish up 255 different objects, each getting their own outline.
///
/// Object index 0 is special: It is the default background of each outline channel, thus rendering with it
/// is a form of "active no outline", effectively subtracting from any outline channel.
#[derive(Clone, Copy, Default, PartialEq, Eq, Debug)]
pub struct OutlineMaskPreference(pub Option<[u8; 2]>);
impl OutlineMaskPreference {
pub const NONE: Self = Self(None);
#[inline]
pub fn some(channel_a: u8, channel_b: u8) -> Self {
Self(Some([channel_a, channel_b]))
}
#[inline]
pub fn is_some(self) -> bool {
self.0.is_some()
}
#[inline]
pub fn is_none(self) -> bool {
self.0.is_none()
}
/// Uses current outline and falls back to `other` if current is `None` or has a zero on any channel.
#[inline]
pub fn with_fallback_to(self, other: Self) -> Self {
if let Some([a, b]) = self.0 {
if let Some([other_a, other_b]) = other.0 {
Self::some(
if a == 0 { other_a } else { a },
if b == 0 { other_b } else { b },
)
} else {
self
}
} else {
other
}
}
}
#[derive(Clone, Debug)]
pub struct OutlineConfig {
/// Outline radius for both layers in pixels. Fractional pixels are valid.
///
/// Could do different radius for both layers if the need arises, but for now this simplifies things.
pub outline_radius_pixel: f32,
/// Premultiplied RGBA color for the first outline layer.
pub color_layer_a: crate::Rgba,
/// Premultiplied RGBA color for the second outline layer.
pub color_layer_b: crate::Rgba,
}
// TODO(andreas): Is this a sort of DrawPhase implementor? Need a system for this.
pub struct OutlineMaskProcessor {
label: DebugLabel,
mask_texture: GpuTexture,
mask_depth: GpuTexture,
voronoi_textures: [GpuTexture; 2],
bind_group_jumpflooding_init: GpuBindGroup,
bind_group_jumpflooding_steps: Vec<GpuBindGroup>,
render_pipeline_jumpflooding_init: GpuRenderPipelineHandle,
render_pipeline_jumpflooding_step: GpuRenderPipelineHandle,
}
mod gpu_data {
use crate::wgpu_buffer_types;
/// Keep in sync with `jumpflooding_step.wgsl`
#[repr(C)]
#[derive(Clone, Copy, bytemuck::Pod, bytemuck::Zeroable)]
pub struct JumpfloodingStepUniformBuffer {
pub step_width: wgpu_buffer_types::U32RowPadded,
/// All this padding hurts. `step_width` be a `PushConstant` but they are not widely supported enough!
pub end_padding: [wgpu_buffer_types::PaddingRow; 16 - 1],
}
}
impl OutlineMaskProcessor {
/// Format of the outline mask target.
///
/// Two channels with each 256 object ids.
pub const MASK_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Rg8Uint;
pub const MASK_DEPTH_FORMAT: wgpu::TextureFormat = ViewBuilder::MAIN_TARGET_DEPTH_FORMAT;
pub const MASK_DEPTH_STATE: Option<wgpu::DepthStencilState> = Some(wgpu::DepthStencilState {
format: Self::MASK_DEPTH_FORMAT,
// Use GreaterEQUAL in order to make outlines overridable.
// This is useful when a large batch shares a common outline, but some of the items in the batch are rendered again with different outlines.
depth_compare: wgpu::CompareFunction::GreaterEqual,
depth_write_enabled: true,
stencil: wgpu::StencilState {
front: wgpu::StencilFaceState::IGNORE,
back: wgpu::StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: wgpu::DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
});
/// Holds two pairs of pixel coordinates (one for each layer).
const VORONOI_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Rgba16Float;
/// Default MSAA state for the outline mask target.
pub fn mask_default_msaa_state(tier: DeviceTier) -> wgpu::MultisampleState {
wgpu::MultisampleState {
count: Self::mask_sample_count(tier),
mask: !0,
alpha_to_coverage_enabled: false,
}
}
/// Number of MSAA samples used for the outline mask target.
pub fn mask_sample_count(tier: DeviceTier) -> u32 {
if tier.support_sampling_msaa_texture() {
// The MSAA shader variant deals with *exactly* 4 samples.
// See `jumpflooding_step_msaa.wgsl`.
4
} else {
1
}
}
pub fn new(
ctx: &RenderContext,
config: &OutlineConfig,
view_name: &DebugLabel,
resolution_in_pixel: [u32; 2],
) -> Self {
re_tracing::profile_function!();
let instance_label: DebugLabel = format!("{view_name} - OutlineMaskProcessor").into();
// ------------- Textures -------------
let texture_pool = &ctx.gpu_resources.textures;
let mask_sample_count = Self::mask_sample_count(ctx.device_caps().tier);
let mask_texture_desc = crate::wgpu_resources::TextureDesc {
label: format!("{instance_label}::mask_texture").into(),
size: wgpu::Extent3d {
width: resolution_in_pixel[0],
height: resolution_in_pixel[1],
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count: mask_sample_count,
dimension: wgpu::TextureDimension::D2,
format: Self::MASK_FORMAT,
usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::RENDER_ATTACHMENT,
};
let mask_texture = texture_pool.alloc(&ctx.device, &mask_texture_desc);
// We have a fresh depth buffer here that we need because:
// * We want outlines visible even if there's an object in front, so don't re-use previous
// * Overdraw IDs correctly
// * TODO(andreas): Make overdrawn outlines more transparent by comparing depth
let mask_depth = texture_pool.alloc(
&ctx.device,
&crate::wgpu_resources::TextureDesc {
label: format!("{instance_label}::mask_depth").into(),
format: Self::MASK_DEPTH_FORMAT,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
..mask_texture_desc
},
);
let voronoi_texture_desc = crate::wgpu_resources::TextureDesc {
label: format!("{instance_label}::distance_texture").into(),
sample_count: 1,
format: Self::VORONOI_FORMAT,
..mask_texture_desc
};
let voronoi_textures = [
texture_pool.alloc(&ctx.device, &voronoi_texture_desc.with_label_push("0")),
texture_pool.alloc(&ctx.device, &voronoi_texture_desc.with_label_push("1")),
];
// ------------- Bind Groups -------------
let (bind_group_jumpflooding_init, bind_group_layout_jumpflooding_init) =
Self::create_bind_group_jumpflooding_init(ctx, &instance_label, &mask_texture);
let (bind_group_jumpflooding_steps, bind_group_layout_jumpflooding_step) =
Self::create_bind_groups_for_jumpflooding_steps(
config,
ctx,
&instance_label,
&voronoi_textures,
);
// ------------- Render Pipelines -------------
let screen_triangle_vertex_shader = screen_triangle_vertex_shader(ctx);
let jumpflooding_init_shader_module = if mask_sample_count == 1 {
include_shader_module!("../../shader/outlines/jumpflooding_init.wgsl")
} else {
include_shader_module!("../../shader/outlines/jumpflooding_init_msaa.wgsl")
};
let jumpflooding_init_desc = RenderPipelineDesc {
label: "OutlineMaskProcessor::jumpflooding_init".into(),
pipeline_layout: ctx.gpu_resources.pipeline_layouts.get_or_create(
ctx,
&PipelineLayoutDesc {
label: "OutlineMaskProcessor::jumpflooding_init".into(),
entries: vec![bind_group_layout_jumpflooding_init],
},
),
vertex_entrypoint: "main".into(),
vertex_handle: screen_triangle_vertex_shader,
fragment_entrypoint: "main".into(),
fragment_handle: ctx
.gpu_resources
.shader_modules
.get_or_create(ctx, &jumpflooding_init_shader_module),
vertex_buffers: smallvec![],
render_targets: smallvec![Some(Self::VORONOI_FORMAT.into())],
primitive: wgpu::PrimitiveState::default(),
depth_stencil: None,
multisample: wgpu::MultisampleState::default(),
};
let render_pipeline_jumpflooding_init = ctx
.gpu_resources
.render_pipelines
.get_or_create(ctx, &jumpflooding_init_desc);
let render_pipeline_jumpflooding_step = ctx.gpu_resources.render_pipelines.get_or_create(
ctx,
&RenderPipelineDesc {
label: "OutlineMaskProcessor::jumpflooding_step".into(),
pipeline_layout: ctx.gpu_resources.pipeline_layouts.get_or_create(
ctx,
&PipelineLayoutDesc {
label: "OutlineMaskProcessor::jumpflooding_step".into(),
entries: vec![bind_group_layout_jumpflooding_step],
},
),
fragment_handle: ctx.gpu_resources.shader_modules.get_or_create(
ctx,
&include_shader_module!("../../shader/outlines/jumpflooding_step.wgsl"),
),
..jumpflooding_init_desc
},
);
Self {
label: instance_label,
mask_texture,
mask_depth,
voronoi_textures,
bind_group_jumpflooding_init,
bind_group_jumpflooding_steps,
render_pipeline_jumpflooding_init,
render_pipeline_jumpflooding_step,
}
}
pub fn final_voronoi_texture(&self) -> &GpuTexture {
// Point to the last written voronoi texture
// We start writing to voronoi_textures[0] and then do `num_steps` ping-pong rendering.
// Therefore, the last texture is voronoi_textures[num_steps % 2]
&self.voronoi_textures[self.bind_group_jumpflooding_steps.len() % 2]
}
pub fn start_mask_render_pass<'a>(
&'a self,
encoder: &'a mut wgpu::CommandEncoder,
) -> wgpu::RenderPass<'a> {
encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: DebugLabel::from(format!("{} - mask pass", self.label)).get(),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &self.mask_texture.default_view,
resolve_target: None, // We're going to do a manual resolve.
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color::TRANSPARENT),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
view: &self.mask_depth.default_view,
depth_ops: Some(wgpu::Operations {
load: ViewBuilder::DEFAULT_DEPTH_CLEAR,
store: wgpu::StoreOp::Discard,
}),
stencil_ops: None,
}),
timestamp_writes: None,
occlusion_query_set: None,
})
}
pub fn compute_outlines(
&self,
pipelines: &GpuRenderPipelinePoolAccessor<'_>,
encoder: &mut wgpu::CommandEncoder,
) -> Result<(), PoolError> {
let ops = wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color::TRANSPARENT), // Clear is the closest to "don't care"
store: wgpu::StoreOp::Store,
};
// Initialize the jump flooding into voronoi texture 0 by looking at the mask texture.
{
let mut jumpflooding_init = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: DebugLabel::from(format!("{} - jumpflooding_init", self.label)).get(),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &self.voronoi_textures[0].default_view,
resolve_target: None,
ops,
})],
depth_stencil_attachment: None,
timestamp_writes: None,
occlusion_query_set: None,
});
let render_pipeline_init = pipelines.get(self.render_pipeline_jumpflooding_init)?;
jumpflooding_init.set_bind_group(0, &self.bind_group_jumpflooding_init, &[]);
jumpflooding_init.set_pipeline(render_pipeline_init);
jumpflooding_init.draw(0..3, 0..1);
}
// Perform jump flooding.
let render_pipeline_step = pipelines.get(self.render_pipeline_jumpflooding_step)?;
for (i, bind_group) in self.bind_group_jumpflooding_steps.iter().enumerate() {
let mut jumpflooding_step = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: DebugLabel::from(format!("{} - jumpflooding_step {i}", self.label)).get(),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
// Start with texture 1 since the init step wrote to texture 0
view: &self.voronoi_textures[(i + 1) % 2].default_view,
resolve_target: None,
ops,
})],
depth_stencil_attachment: None,
timestamp_writes: None,
occlusion_query_set: None,
});
jumpflooding_step.set_pipeline(render_pipeline_step);
jumpflooding_step.set_bind_group(0, bind_group, &[]);
jumpflooding_step.draw(0..3, 0..1);
}
Ok(())
}
fn create_bind_group_jumpflooding_init(
ctx: &RenderContext,
instance_label: &DebugLabel,
mask_texture: &GpuTexture,
) -> (GpuBindGroup, GpuBindGroupLayoutHandle) {
let bind_group_layout_jumpflooding_init =
ctx.gpu_resources.bind_group_layouts.get_or_create(
&ctx.device,
&BindGroupLayoutDesc {
label: "OutlineMaskProcessor::bind_group_layout_jumpflooding_init".into(),
entries: vec![wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
sample_type: wgpu::TextureSampleType::Uint,
view_dimension: wgpu::TextureViewDimension::D2,
multisampled: mask_texture.texture.sample_count() > 1,
},
count: None,
}],
},
);
(
ctx.gpu_resources.bind_groups.alloc(
&ctx.device,
&ctx.gpu_resources,
&BindGroupDesc {
label: format!("{instance_label}::jumpflooding_init").into(),
entries: smallvec![BindGroupEntry::DefaultTextureView(mask_texture.handle)],
layout: bind_group_layout_jumpflooding_init,
},
),
bind_group_layout_jumpflooding_init,
)
}
fn create_bind_groups_for_jumpflooding_steps(
config: &OutlineConfig,
ctx: &RenderContext,
instance_label: &DebugLabel,
voronoi_textures: &[GpuTexture; 2],
) -> (Vec<GpuBindGroup>, GpuBindGroupLayoutHandle) {
let bind_group_layout_jumpflooding_step =
ctx.gpu_resources.bind_group_layouts.get_or_create(
&ctx.device,
&BindGroupLayoutDesc {
label: "OutlineMaskProcessor::bind_group_layout_jumpflooding_step".into(),
entries: vec![
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
sample_type: wgpu::TextureSampleType::Float { filterable: false },
view_dimension: wgpu::TextureViewDimension::D2,
multisampled: false,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::NonFiltering),
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 2,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
// Dynamic offset would make sense here since we cycle through a bunch of these.
// But we need at least two bind groups anyways since we're ping-ponging between two textures,
// which would make this needlessly complicated.
has_dynamic_offset: false,
min_binding_size: std::num::NonZeroU64::new(std::mem::size_of::<
gpu_data::JumpfloodingStepUniformBuffer,
>(
)
as _),
},
count: None,
},
],
},
);
let max_step_width =
(config.outline_radius_pixel.max(1.0).ceil() as u32).next_power_of_two();
let num_steps = max_step_width.ilog2() + 1;
let uniform_buffer_jumpflooding_steps_bindings = create_and_fill_uniform_buffer_batch(
ctx,
"jumpflooding uniformbuffer".into(),
(0..num_steps).map(|step| gpu_data::JumpfloodingStepUniformBuffer {
step_width: (max_step_width >> step).into(),
end_padding: Default::default(),
}),
);
let sampler = ctx.gpu_resources.samplers.get_or_create(
&ctx.device,
&SamplerDesc {
label: "nearest_clamp".into(),
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
..Default::default()
},
);
let uniform_buffer_jumpflooding_steps = uniform_buffer_jumpflooding_steps_bindings
.into_iter()
.enumerate()
.map(|(i, uniform_buffer_binding)| {
ctx.gpu_resources.bind_groups.alloc(
&ctx.device,
&ctx.gpu_resources,
&BindGroupDesc {
label: format!("{instance_label}::jumpflooding_steps[{i}]").into(),
entries: smallvec![
BindGroupEntry::DefaultTextureView(voronoi_textures[i % 2].handle),
BindGroupEntry::Sampler(sampler),
uniform_buffer_binding
],
layout: bind_group_layout_jumpflooding_step,
},
)
})
.collect();
(
uniform_buffer_jumpflooding_steps,
bind_group_layout_jumpflooding_step,
)
}
}