1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
//! Outlines as postprocessing effect.
//!
//! This module provides the [`OutlineMaskProcessor`] which handles render passes around outlines.
//! The outlines themselves are evaluated and drawn by the main compositor.
//!
//! There are two channels (in shader code referred to as A and B) that are handled simultaneously.
//! For configuring the look of the outline refer to [`OutlineConfig`].
//! For setting outlines for an individual primitive from another [`crate::renderer::Renderer`]/[`crate::renderer::DrawData`],
//! check for [`OutlineMaskPreference`] settings on that primitive.
//!
//! How it works:
//! =============
//! The basic approach follows closely @bgolus' [blog post](https://bgolus.medium.com/the-quest-for-very-wide-outlines-ba82ed442cd9)
//! on jump-flooding based outlines.
//!
//! Quick recap & overview:
//! * Render scene into a mask texture
//! * Extract a contour from the mask texture, for each contour pixel write the position in the (to-be) voronoi texture.
//!     * in our case we extract all pixels at which the mask changes (details below)
//! * Jump-flooding iterations: For each pixel in the voronoi texture,
//!   sample the current pixel and an 8-neighborhood at a certain, for each pass decreasing, distance and write out the closest position seen so far.
//!     * This is repeated for `log2(outline_width)` iterations.
//! * During composition, extract an outline by checking the distance to the closest contour using the voronoi texture
//!
//! What makes our implementation (a little bit) special:
//! -----------------------------------------------------
//! In short: We have more complex outline relationships but do so without additional passes!
//!
//! * Different objects may have outlines between each other
//!     * This is achieved by making the mask texture a 2 channel texture, where each channel is a different 8bit object id.
//!         * object ids are arbitrary and only for the purpose of distinguishing between outlines
//!     * Since we now no longer can resolve anti-aliasing in a straight forward manner (can't blend object ids!),
//!         * This implies a custom resolve during contour extraction!
//!     * It seems to force our hand towards outlines that extend inwards:
//!         * For each channel A & B we only get a single voronoi texture (fused into one 4 channel texture),
//!           meaning that we only have a single unsigned distance to the closest contour.
//!           If we don't want to ignore objects drawn upon each other, we need to compute the distance to any contour (== pixel where object id changes).
//!         * It might be possible to mask out inner outlines during composition, but it's not clear what the exact masking rules are for this.
//! * We use two channels (A and B) for outlines, so that we can have two independent outlines (even for the same object if desired)
//!     * We do this in a single pass by using a 2 channel texture on the mask (object id A, object id B) and
//!       a 4 channel texture on the voronoi texture (xy coordinates for A, xy coordinates for B)
//!
//! More details can be found in the respective shader code.
//!

use crate::{
    allocator::create_and_fill_uniform_buffer_batch,
    config::DeviceTier,
    include_shader_module,
    renderer::screen_triangle_vertex_shader,
    view_builder::ViewBuilder,
    wgpu_resources::{
        BindGroupDesc, BindGroupEntry, BindGroupLayoutDesc, GpuBindGroup, GpuBindGroupLayoutHandle,
        GpuRenderPipelineHandle, GpuRenderPipelinePoolAccessor, GpuTexture, PipelineLayoutDesc,
        PoolError, RenderPipelineDesc, SamplerDesc,
    },
    DebugLabel, RenderContext,
};

use smallvec::smallvec;

/// What outline (if any) should be drawn.
///
/// Outlines have two channels (referred to as A and B).
/// Each channel can distinguish up 255 different objects, each getting their own outline.
///
/// Object index 0 is special: It is the default background of each outline channel, thus rendering with it
/// is a form of "active no outline", effectively subtracting from any outline channel.
#[derive(Clone, Copy, Default, PartialEq, Eq, Debug)]
pub struct OutlineMaskPreference(pub Option<[u8; 2]>);

impl OutlineMaskPreference {
    pub const NONE: Self = Self(None);

    #[inline]
    pub fn some(channel_a: u8, channel_b: u8) -> Self {
        Self(Some([channel_a, channel_b]))
    }

    #[inline]
    pub fn is_some(self) -> bool {
        self.0.is_some()
    }

    #[inline]
    pub fn is_none(self) -> bool {
        self.0.is_none()
    }

    /// Uses current outline and falls back to `other` if current is `None` or has a zero on any channel.
    #[inline]
    pub fn with_fallback_to(self, other: Self) -> Self {
        if let Some([a, b]) = self.0 {
            if let Some([other_a, other_b]) = other.0 {
                Self::some(
                    if a == 0 { other_a } else { a },
                    if b == 0 { other_b } else { b },
                )
            } else {
                self
            }
        } else {
            other
        }
    }
}

#[derive(Clone, Debug)]
pub struct OutlineConfig {
    /// Outline radius for both layers in pixels. Fractional pixels are valid.
    ///
    /// Could do different radius for both layers if the need arises, but for now this simplifies things.
    pub outline_radius_pixel: f32,

    /// Premultiplied RGBA color for the first outline layer.
    pub color_layer_a: crate::Rgba,

    /// Premultiplied RGBA color for the second outline layer.
    pub color_layer_b: crate::Rgba,
}

// TODO(andreas): Is this a sort of DrawPhase implementor? Need a system for this.
pub struct OutlineMaskProcessor {
    label: DebugLabel,

    mask_texture: GpuTexture,
    mask_depth: GpuTexture,
    voronoi_textures: [GpuTexture; 2],

    bind_group_jumpflooding_init: GpuBindGroup,
    bind_group_jumpflooding_steps: Vec<GpuBindGroup>,

    render_pipeline_jumpflooding_init: GpuRenderPipelineHandle,
    render_pipeline_jumpflooding_step: GpuRenderPipelineHandle,
}

mod gpu_data {
    use crate::wgpu_buffer_types;

    /// Keep in sync with `jumpflooding_step.wgsl`
    #[repr(C)]
    #[derive(Clone, Copy, bytemuck::Pod, bytemuck::Zeroable)]
    pub struct JumpfloodingStepUniformBuffer {
        pub step_width: wgpu_buffer_types::U32RowPadded,

        /// All this padding hurts. `step_width` be a `PushConstant` but they are not widely supported enough!
        pub end_padding: [wgpu_buffer_types::PaddingRow; 16 - 1],
    }
}

impl OutlineMaskProcessor {
    /// Format of the outline mask target.
    ///
    /// Two channels with each 256 object ids.
    pub const MASK_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Rg8Uint;
    pub const MASK_DEPTH_FORMAT: wgpu::TextureFormat = ViewBuilder::MAIN_TARGET_DEPTH_FORMAT;
    pub const MASK_DEPTH_STATE: Option<wgpu::DepthStencilState> = Some(wgpu::DepthStencilState {
        format: Self::MASK_DEPTH_FORMAT,
        // Use GreaterEQUAL in order to make outlines overridable.
        // This is useful when a large batch shares a common outline, but some of the items in the batch are rendered again with different outlines.
        depth_compare: wgpu::CompareFunction::GreaterEqual,
        depth_write_enabled: true,
        stencil: wgpu::StencilState {
            front: wgpu::StencilFaceState::IGNORE,
            back: wgpu::StencilFaceState::IGNORE,
            read_mask: 0,
            write_mask: 0,
        },
        bias: wgpu::DepthBiasState {
            constant: 0,
            slope_scale: 0.0,
            clamp: 0.0,
        },
    });

    /// Holds two pairs of pixel coordinates (one for each layer).
    const VORONOI_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Rgba16Float;

    /// Default MSAA state for the outline mask target.
    pub fn mask_default_msaa_state(tier: DeviceTier) -> wgpu::MultisampleState {
        wgpu::MultisampleState {
            count: Self::mask_sample_count(tier),
            mask: !0,
            alpha_to_coverage_enabled: false,
        }
    }

    /// Number of MSAA samples used for the outline mask target.
    pub fn mask_sample_count(tier: DeviceTier) -> u32 {
        if tier.support_sampling_msaa_texture() {
            // The MSAA shader variant deals with *exactly* 4 samples.
            // See `jumpflooding_step_msaa.wgsl`.
            4
        } else {
            1
        }
    }

    pub fn new(
        ctx: &RenderContext,
        config: &OutlineConfig,
        view_name: &DebugLabel,
        resolution_in_pixel: [u32; 2],
    ) -> Self {
        re_tracing::profile_function!();
        let instance_label: DebugLabel = format!("{view_name} - OutlineMaskProcessor").into();

        // ------------- Textures -------------
        let texture_pool = &ctx.gpu_resources.textures;

        let mask_sample_count = Self::mask_sample_count(ctx.device_caps().tier);
        let mask_texture_desc = crate::wgpu_resources::TextureDesc {
            label: format!("{instance_label}::mask_texture").into(),
            size: wgpu::Extent3d {
                width: resolution_in_pixel[0],
                height: resolution_in_pixel[1],
                depth_or_array_layers: 1,
            },
            mip_level_count: 1,
            sample_count: mask_sample_count,
            dimension: wgpu::TextureDimension::D2,
            format: Self::MASK_FORMAT,
            usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::RENDER_ATTACHMENT,
        };
        let mask_texture = texture_pool.alloc(&ctx.device, &mask_texture_desc);

        // We have a fresh depth buffer here that we need because:
        // * We want outlines visible even if there's an object in front, so don't re-use previous
        // * Overdraw IDs correctly
        // * TODO(andreas): Make overdrawn outlines more transparent by comparing depth
        let mask_depth = texture_pool.alloc(
            &ctx.device,
            &crate::wgpu_resources::TextureDesc {
                label: format!("{instance_label}::mask_depth").into(),
                format: Self::MASK_DEPTH_FORMAT,
                usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
                ..mask_texture_desc
            },
        );

        let voronoi_texture_desc = crate::wgpu_resources::TextureDesc {
            label: format!("{instance_label}::distance_texture").into(),
            sample_count: 1,
            format: Self::VORONOI_FORMAT,
            ..mask_texture_desc
        };
        let voronoi_textures = [
            texture_pool.alloc(&ctx.device, &voronoi_texture_desc.with_label_push("0")),
            texture_pool.alloc(&ctx.device, &voronoi_texture_desc.with_label_push("1")),
        ];

        // ------------- Bind Groups -------------

        let (bind_group_jumpflooding_init, bind_group_layout_jumpflooding_init) =
            Self::create_bind_group_jumpflooding_init(ctx, &instance_label, &mask_texture);
        let (bind_group_jumpflooding_steps, bind_group_layout_jumpflooding_step) =
            Self::create_bind_groups_for_jumpflooding_steps(
                config,
                ctx,
                &instance_label,
                &voronoi_textures,
            );

        // ------------- Render Pipelines -------------

        let screen_triangle_vertex_shader = screen_triangle_vertex_shader(ctx);
        let jumpflooding_init_shader_module = if mask_sample_count == 1 {
            include_shader_module!("../../shader/outlines/jumpflooding_init.wgsl")
        } else {
            include_shader_module!("../../shader/outlines/jumpflooding_init_msaa.wgsl")
        };
        let jumpflooding_init_desc = RenderPipelineDesc {
            label: "OutlineMaskProcessor::jumpflooding_init".into(),
            pipeline_layout: ctx.gpu_resources.pipeline_layouts.get_or_create(
                ctx,
                &PipelineLayoutDesc {
                    label: "OutlineMaskProcessor::jumpflooding_init".into(),
                    entries: vec![bind_group_layout_jumpflooding_init],
                },
            ),
            vertex_entrypoint: "main".into(),
            vertex_handle: screen_triangle_vertex_shader,
            fragment_entrypoint: "main".into(),
            fragment_handle: ctx
                .gpu_resources
                .shader_modules
                .get_or_create(ctx, &jumpflooding_init_shader_module),
            vertex_buffers: smallvec![],
            render_targets: smallvec![Some(Self::VORONOI_FORMAT.into())],
            primitive: wgpu::PrimitiveState::default(),
            depth_stencil: None,
            multisample: wgpu::MultisampleState::default(),
        };
        let render_pipeline_jumpflooding_init = ctx
            .gpu_resources
            .render_pipelines
            .get_or_create(ctx, &jumpflooding_init_desc);
        let render_pipeline_jumpflooding_step = ctx.gpu_resources.render_pipelines.get_or_create(
            ctx,
            &RenderPipelineDesc {
                label: "OutlineMaskProcessor::jumpflooding_step".into(),
                pipeline_layout: ctx.gpu_resources.pipeline_layouts.get_or_create(
                    ctx,
                    &PipelineLayoutDesc {
                        label: "OutlineMaskProcessor::jumpflooding_step".into(),
                        entries: vec![bind_group_layout_jumpflooding_step],
                    },
                ),
                fragment_handle: ctx.gpu_resources.shader_modules.get_or_create(
                    ctx,
                    &include_shader_module!("../../shader/outlines/jumpflooding_step.wgsl"),
                ),
                ..jumpflooding_init_desc
            },
        );

        Self {
            label: instance_label,
            mask_texture,
            mask_depth,
            voronoi_textures,
            bind_group_jumpflooding_init,
            bind_group_jumpflooding_steps,
            render_pipeline_jumpflooding_init,
            render_pipeline_jumpflooding_step,
        }
    }

    pub fn final_voronoi_texture(&self) -> &GpuTexture {
        // Point to the last written voronoi texture
        // We start writing to voronoi_textures[0] and then do `num_steps` ping-pong rendering.
        // Therefore, the last texture is voronoi_textures[num_steps % 2]
        &self.voronoi_textures[self.bind_group_jumpflooding_steps.len() % 2]
    }

    pub fn start_mask_render_pass<'a>(
        &'a self,
        encoder: &'a mut wgpu::CommandEncoder,
    ) -> wgpu::RenderPass<'a> {
        encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
            label: DebugLabel::from(format!("{} - mask pass", self.label)).get(),
            color_attachments: &[Some(wgpu::RenderPassColorAttachment {
                view: &self.mask_texture.default_view,
                resolve_target: None, // We're going to do a manual resolve.
                ops: wgpu::Operations {
                    load: wgpu::LoadOp::Clear(wgpu::Color::TRANSPARENT),
                    store: wgpu::StoreOp::Store,
                },
            })],
            depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
                view: &self.mask_depth.default_view,
                depth_ops: Some(wgpu::Operations {
                    load: ViewBuilder::DEFAULT_DEPTH_CLEAR,
                    store: wgpu::StoreOp::Discard,
                }),
                stencil_ops: None,
            }),
            timestamp_writes: None,
            occlusion_query_set: None,
        })
    }

    pub fn compute_outlines(
        &self,
        pipelines: &GpuRenderPipelinePoolAccessor<'_>,
        encoder: &mut wgpu::CommandEncoder,
    ) -> Result<(), PoolError> {
        let ops = wgpu::Operations {
            load: wgpu::LoadOp::Clear(wgpu::Color::TRANSPARENT), // Clear is the closest to "don't care"
            store: wgpu::StoreOp::Store,
        };

        // Initialize the jump flooding into voronoi texture 0 by looking at the mask texture.
        {
            let mut jumpflooding_init = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
                label: DebugLabel::from(format!("{} - jumpflooding_init", self.label)).get(),
                color_attachments: &[Some(wgpu::RenderPassColorAttachment {
                    view: &self.voronoi_textures[0].default_view,
                    resolve_target: None,
                    ops,
                })],
                depth_stencil_attachment: None,
                timestamp_writes: None,
                occlusion_query_set: None,
            });

            let render_pipeline_init = pipelines.get(self.render_pipeline_jumpflooding_init)?;
            jumpflooding_init.set_bind_group(0, &self.bind_group_jumpflooding_init, &[]);
            jumpflooding_init.set_pipeline(render_pipeline_init);
            jumpflooding_init.draw(0..3, 0..1);
        }

        // Perform jump flooding.
        let render_pipeline_step = pipelines.get(self.render_pipeline_jumpflooding_step)?;
        for (i, bind_group) in self.bind_group_jumpflooding_steps.iter().enumerate() {
            let mut jumpflooding_step = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
                label: DebugLabel::from(format!("{} - jumpflooding_step {i}", self.label)).get(),
                color_attachments: &[Some(wgpu::RenderPassColorAttachment {
                    // Start with texture 1 since the init step wrote to texture 0
                    view: &self.voronoi_textures[(i + 1) % 2].default_view,
                    resolve_target: None,
                    ops,
                })],
                depth_stencil_attachment: None,
                timestamp_writes: None,
                occlusion_query_set: None,
            });

            jumpflooding_step.set_pipeline(render_pipeline_step);
            jumpflooding_step.set_bind_group(0, bind_group, &[]);
            jumpflooding_step.draw(0..3, 0..1);
        }

        Ok(())
    }

    fn create_bind_group_jumpflooding_init(
        ctx: &RenderContext,
        instance_label: &DebugLabel,
        mask_texture: &GpuTexture,
    ) -> (GpuBindGroup, GpuBindGroupLayoutHandle) {
        let bind_group_layout_jumpflooding_init =
            ctx.gpu_resources.bind_group_layouts.get_or_create(
                &ctx.device,
                &BindGroupLayoutDesc {
                    label: "OutlineMaskProcessor::bind_group_layout_jumpflooding_init".into(),
                    entries: vec![wgpu::BindGroupLayoutEntry {
                        binding: 0,
                        visibility: wgpu::ShaderStages::FRAGMENT,
                        ty: wgpu::BindingType::Texture {
                            sample_type: wgpu::TextureSampleType::Uint,
                            view_dimension: wgpu::TextureViewDimension::D2,
                            multisampled: mask_texture.texture.sample_count() > 1,
                        },
                        count: None,
                    }],
                },
            );
        (
            ctx.gpu_resources.bind_groups.alloc(
                &ctx.device,
                &ctx.gpu_resources,
                &BindGroupDesc {
                    label: format!("{instance_label}::jumpflooding_init").into(),
                    entries: smallvec![BindGroupEntry::DefaultTextureView(mask_texture.handle)],
                    layout: bind_group_layout_jumpflooding_init,
                },
            ),
            bind_group_layout_jumpflooding_init,
        )
    }

    fn create_bind_groups_for_jumpflooding_steps(
        config: &OutlineConfig,
        ctx: &RenderContext,
        instance_label: &DebugLabel,
        voronoi_textures: &[GpuTexture; 2],
    ) -> (Vec<GpuBindGroup>, GpuBindGroupLayoutHandle) {
        let bind_group_layout_jumpflooding_step =
            ctx.gpu_resources.bind_group_layouts.get_or_create(
                &ctx.device,
                &BindGroupLayoutDesc {
                    label: "OutlineMaskProcessor::bind_group_layout_jumpflooding_step".into(),
                    entries: vec![
                        wgpu::BindGroupLayoutEntry {
                            binding: 0,
                            visibility: wgpu::ShaderStages::FRAGMENT,
                            ty: wgpu::BindingType::Texture {
                                sample_type: wgpu::TextureSampleType::Float { filterable: false },
                                view_dimension: wgpu::TextureViewDimension::D2,
                                multisampled: false,
                            },
                            count: None,
                        },
                        wgpu::BindGroupLayoutEntry {
                            binding: 1,
                            visibility: wgpu::ShaderStages::FRAGMENT,
                            ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::NonFiltering),
                            count: None,
                        },
                        wgpu::BindGroupLayoutEntry {
                            binding: 2,
                            visibility: wgpu::ShaderStages::FRAGMENT,
                            ty: wgpu::BindingType::Buffer {
                                ty: wgpu::BufferBindingType::Uniform,
                                // Dynamic offset would make sense here since we cycle through a bunch of these.
                                // But we need at least two bind groups anyways since we're ping-ponging between two textures,
                                // which would make this needlessly complicated.
                                has_dynamic_offset: false,
                                min_binding_size: std::num::NonZeroU64::new(std::mem::size_of::<
                                    gpu_data::JumpfloodingStepUniformBuffer,
                                >(
                                )
                                    as _),
                            },
                            count: None,
                        },
                    ],
                },
            );

        let max_step_width =
            (config.outline_radius_pixel.max(1.0).ceil() as u32).next_power_of_two();
        let num_steps = max_step_width.ilog2() + 1;
        let uniform_buffer_jumpflooding_steps_bindings = create_and_fill_uniform_buffer_batch(
            ctx,
            "jumpflooding uniformbuffer".into(),
            (0..num_steps).map(|step| gpu_data::JumpfloodingStepUniformBuffer {
                step_width: (max_step_width >> step).into(),
                end_padding: Default::default(),
            }),
        );
        let sampler = ctx.gpu_resources.samplers.get_or_create(
            &ctx.device,
            &SamplerDesc {
                label: "nearest_clamp".into(),
                address_mode_u: wgpu::AddressMode::ClampToEdge,
                address_mode_v: wgpu::AddressMode::ClampToEdge,
                address_mode_w: wgpu::AddressMode::ClampToEdge,
                ..Default::default()
            },
        );
        let uniform_buffer_jumpflooding_steps = uniform_buffer_jumpflooding_steps_bindings
            .into_iter()
            .enumerate()
            .map(|(i, uniform_buffer_binding)| {
                ctx.gpu_resources.bind_groups.alloc(
                    &ctx.device,
                    &ctx.gpu_resources,
                    &BindGroupDesc {
                        label: format!("{instance_label}::jumpflooding_steps[{i}]").into(),
                        entries: smallvec![
                            BindGroupEntry::DefaultTextureView(voronoi_textures[i % 2].handle),
                            BindGroupEntry::Sampler(sampler),
                            uniform_buffer_binding
                        ],
                        layout: bind_group_layout_jumpflooding_step,
                    },
                )
            })
            .collect();

        (
            uniform_buffer_jumpflooding_steps,
            bind_group_layout_jumpflooding_step,
        )
    }
}