1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
//! This module implements one half of our cross-platform #import system.
//!
//! The other half is provided as an extension to the build system, see the `build.rs` file
//! at the root of this crate.
//!
//! While it is agnostic to the type of files being imported, in practice this is only used
//! for shaders, thus this is what this documentation will linger on.
//! In particular, integration with our hot-reloading capabilities can get tricky depending
//! on the platform/target.
//!
//! ## Usage
//!
//! `#import <x/y/z/my_file.wgsl>`
//!
//! ### Syntax
//!
//! Import clauses follow the general form of `#import <x/y/z/my_file.wgsl>`.
//! The path to be imported can be either absolute or relative to the path of the importer,
//! or relative to any of the paths set in the search path (`RERUN_SHADER_PATH`).
//!
//! The actual parsing rules themselves are very barebones:
//! - An import clause can only span one line.
//! - An import clause line must start with `#import ` (exl. whitespaces).
//! - Everything between the first `<` and the last `>` is interpreted as the import
//! path, as-is. We do so because, between the 4 major platforms (Linux, macOS, Window, Web),
//! basically any string is a valid path.
//!
//! Everything is `trim()`ed at every step, you do not need to worry about whitespaces.
//!
//! ### Resolution
//!
//! Resolution is done in three steps:
//! 1. First, we try to interpret the imported path as absolute.
//! 1.1. If this is possible and leads to an existing file, we're done.
//! 1.2. Otherwise, we go to 2.
//!
//! 2. Second, we try to interpret the imported path as relative to the importer's.
//! 2.1. If this leads to an existing file, we're done.
//! 2.2. Otherwise, we go to 3.
//!
//! 3. Finally, we try to interpret the imported path as relative to all the directories
//! present in the search path, in their prefined priority order, similar to e.g. how
//! the standard `$PATH` environment variable behaves.
//! 3.1. If this leads to an existing file, we're done.
//! 3.2. Otherwise, resolution failed: throw an error.
//!
//! ### Interpolation
//!
//! Interpolation is done in the simplest way possible: the entire line containing the import
//! clause is overwritten with the contents of the imported file.
//! This is of course a recursive process.
//!
//! #### A word about `#pragma` semantics
//!
//! Imports can behave in two different ways: `#pragma once` and `#pragma many`.
//!
//! `#pragma once` means that each unique #import clause is only be resolved once even if it
//! used several times, e.g. assuming that `a.txt` contains the string `"xyz"` then:
//! ```raw
//! #import <a.txt>
//! #import <a.txt>
//! ```
//! becomes
//! ```raw
//! xyz
//! ```
//!
//! `#pragma many` on the other hand will resolve the clause as many times as it is used:
//! ```raw
//! #import <a.txt>
//! #import <a.txt>
//! ```
//! becomes
//! ```raw
//! xyz
//! xyz
//! ```
//!
//! At the moment, our import system only provides support for `#pragma once` semantics.
//!
//! ## Hot-reloading: platform specifics
//!
//! This import system transparently integrates with the renderer's hot-reloading capabilities.
//! What that actually means in practice depends on the platform/target.
//!
//! A general over-simplification of what we're aiming for can be expressed as:
//! > Be lazy in debug, be eager in release.
//!
//! When targeting native debug builds, we want everything to be as lazy as possible, everything
//! to happen just-in-time, e.g.:
//! - We always talk directly with the filesystem and check for missing files at the last moment.
//! - We do resolution & interpolation just-in-time, e.g. just before calling
//! `create_shader_module`.
//! - Etc.
//!
//! On the web, we don't even have an actual filesystem to access at runtime, so not only we'd
//! like to be as eager can be, we don't have much of a choice to begin with.
//! That said, we don't want to be _too_ eager either: while we do have to make sure that every
//! single shader that we're gonna use (whether directly or indirectly via an import) ends up
//! in the final artifact one way or another, we still want to delay interpolation as much as
//! we can, otherwise we'd be bloating the binary artifact with N copies of the exact same
//! shader code.
//!
//! Still, we'd like to limit the number of differences between targets/platforms.
//! And indeed, the current implementation uses a virtual filesystem approach to effectively
//! remove any difference between how the different platforms behave at run-time.
//!
//! ### Debug builds (excl. web)
//!
//! Native debug builds are straightforward:
//! - We handle resolution & interpolation just-in-time (i.e. when fetching file contents).
//! - We always talk directly to the filesystem.
//!
//! No surprises there.
//!
//! ### Release builds (incl. web)
//!
//! Things are very different for release artifacts, as 1) we disable hot-reloading there and
//! 2) we never interact with the OS filesystem at run-time.
//! Still, in practice, we handle release builds just the same as debug ones.
//!
//! What happens there is we have a virtual, hermetic, in-memory filesystem that gets pre-loaded
//! with all the shaders defined within the Cargo workspace.
//! This happens in part through a build script that you can find at the root of this crate.
//!
//! From there, everything behaves exactly the same as usual. In fact, there is only one code
//! path for all platforms at run-time.
//!
//! There are many issues to deal with along the way though: paths comparisons across
//! environments and build-time/run-time, hermeticism, etc…
//! We won't cover those here: please refer to the code if you're curious.
//!
//! ## For developers
//!
//! ### Canonicalization vs. Normalization
//!
//! Comparing paths can get tricky, especially when juggling target environments and
//! run-time vs. compile-time constraints.
//! For this reason you'll see plenty mentions of canonicalization and normalization all over
//! the code: better make sure there's no confusion here.
//!
//! Canonicalization (i.e. `std::fs::canonicalize`) relies on syscalls to both normalize a path
//! (including following symlinks!) and make sure the file it references actually exist.
//!
//! It's the strictest form of path normalization you can get (and therefore ideal), but
//! requires 1) to have access to an actual filesystem at run-time and 2) that the file
//! being referenced already exists.
//!
//! Normalization (not available in `std`) on the other hand is purely lexicographical: it
//! normalizes paths as best as it can without ever touching the filesystem.
//!
//! See also "[Getting Dot-Dot Right](https://9p.io/sys/doc/lexnames.html)".
//!
//! ### Hermeticism
//!
//! When shipping release artifacts (whether web or otherwise), we want to avoid leaking state
//! from the original build environments into the final binary (think: paths, timestamps, etc).
//! We need to the build to be _hermetic_.
//!
//! Rust's `file!()` macro already takes care of that to some extent, and we need to match that
//! behavior on our side (e.g. by not leaking local paths), otherwise we won't be able to
//! compare paths at runtime.
//!
//! Think of it as `chroot`ing into our Cargo workspace :)
//!
//! In our case, there's an extra invariant on top on that: we must never embed shaders from
//! outside the workspace into our release artifacts!
//!
//! ## Things we don't support
//!
//! - Async: everything in this module is done using standard synchronous APIs.
//! - Compression, minification, etc: everything we embed is embedded as-is.
//! - Importing via network requests: only the (virtual) filesystem is supported for now.
//! - Implicit file suffixes: e.g. `#import <myshader>` for `myshader.wglsl`.
//! - Embedding raw Naga modules: not yet, though we have everything in place for it.
// TODO(cmc): might want to support implicitly dropping file suffixes at some point, e.g.
// `#import <my_shader>` which works with "my_shader.wgsl"
use std::{
path::{Path, PathBuf},
rc::Rc,
};
use ahash::{HashMap, HashSet, HashSetExt};
use anyhow::{anyhow, bail, ensure, Context as _};
use clean_path::Clean as _;
use crate::FileSystem;
// ---
/// Specifies where to look for imports when both absolute and relative resolution fail.
///
/// This is akin to the standard `$PATH` environment variable.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct SearchPath {
/// All directories currently in the search path, in decreasing order of priority.
/// They are guaranteed to be normalized, but not canonicalized.
dirs: Vec<PathBuf>,
}
impl SearchPath {
pub fn from_env() -> Self {
const RERUN_SHADER_PATH: &str = "RERUN_SHADER_PATH";
std::env::var(RERUN_SHADER_PATH)
.map_or_else(|_| Ok(Self::default()), |s| s.parse())
.unwrap_or_else(|_| Self::default())
}
/// Push a path to search path.
///
/// The path is normalized first, but not canonicalized.
pub fn push(&mut self, dir: impl AsRef<Path>) {
self.dirs.push(dir.as_ref().clean());
}
/// Insert a path into search path.
///
/// The path is normalized first, but not canonicalized.
pub fn insert(&mut self, index: usize, dir: impl AsRef<Path>) {
self.dirs.insert(index, dir.as_ref().clean());
}
/// Returns an iterator over the directories in the search path, in decreasing
/// order of priority.
pub fn iter(&self) -> impl Iterator<Item = &Path> {
self.dirs.iter().map(|p| p.as_path())
}
}
impl std::str::FromStr for SearchPath {
type Err = anyhow::Error;
fn from_str(s: &str) -> Result<Self, Self::Err> {
// Using implicit Vec<Result<_>> -> Result<Vec<_>> collection.
let dirs: Result<Vec<PathBuf>, _> = s
.split(':')
.filter(|s| !s.is_empty())
.map(|s| {
s.parse()
.with_context(|| format!("couldn't parse {s:?} as PathBuf"))
})
.collect();
// We cannot check whether these actually are directories, since they are not
// guaranteed to even exist yet!
// Similarly, we cannot canonicalize here, but we can at least normalize.
dirs.map(|dirs| Self {
dirs: dirs.into_iter().map(|dir| dir.clean()).collect(),
})
}
}
impl std::fmt::Display for SearchPath {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let s = self
.dirs
.iter()
.map(|p| p.to_string_lossy())
.collect::<Vec<_>>()
.join(":");
f.write_str(&s)
}
}
// ---
// TODO(cmc): codespan errors?
/// A pre-parsed import clause, as in `#import <something>`.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct ImportClause {
/// The path being imported, as-is: neither canonicalized nor normalized.
path: PathBuf,
}
impl ImportClause {
pub const PREFIX: &'static str = "#import ";
}
impl<P: Into<PathBuf>> From<P> for ImportClause {
fn from(path: P) -> Self {
Self { path: path.into() }
}
}
impl std::str::FromStr for ImportClause {
type Err = anyhow::Error;
fn from_str(clause_str: &str) -> Result<Self, Self::Err> {
let s = clause_str.trim();
ensure!(
s.starts_with(Self::PREFIX),
"import clause must start with {prefix:?}, got {s:?}",
prefix = Self::PREFIX,
);
let s = s.trim_start_matches(Self::PREFIX).trim();
let rs = s.chars().rev().collect::<String>();
let splits = s
.find('<')
.and_then(|i0| rs.find('>').map(|i1| (i0 + 1, rs.len() - i1 - 1)));
if let Some((i0, i1)) = splits {
let s = &s[i0..i1];
ensure!(!s.is_empty(), "import clause must contain a non-empty path");
return s
.parse()
.with_context(|| "couldn't parse {s:?} as PathBuf")
.map(|path| Self { path });
}
bail!("misformatted import clause: {clause_str:?}")
}
}
impl std::fmt::Display for ImportClause {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!("#import <{}>", self.path.to_string_lossy()))
}
}
#[cfg(test)]
mod tests_import_clause {
use super::*;
#[test]
fn parsing_success() {
let testcases: [(&str, PathBuf, Option<&str>); 16] = [
(
"#import <my_constants>",
"my_constants".parse().unwrap(),
None,
),
(
"#import <my_constants.wgsl>",
"my_constants.wgsl".parse().unwrap(),
None,
),
(
"#import <x/y/z/my_constants>",
"x/y/z/my_constants".parse().unwrap(),
None,
),
(
"#import <x/y/z/my_constants.wgsl>",
"x/y/z/my_constants.wgsl".parse().unwrap(),
None,
),
(
"#import </x/y/z/my_constants>",
"/x/y/z/my_constants".parse().unwrap(),
None,
),
(
"#import </x/y/z/my_constants.wgsl>",
"/x/y/z/my_constants.wgsl".parse().unwrap(),
None,
),
(
"#import </x/y/z/my constants>",
"/x/y/z/my constants".parse().unwrap(),
None,
),
(
"#import </x/y/z/my constants.wgsl>",
"/x/y/z/my constants.wgsl".parse().unwrap(),
None,
),
(
"#import </x/y/z/my><constants>",
"/x/y/z/my><constants".parse().unwrap(),
None,
),
(
"#import </x/y/z/my><constants.wgsl>",
"/x/y/z/my><constants.wgsl".parse().unwrap(),
None,
),
(
" #import \t\t\t </x/y/z/my>\" \"<constants> \t\t\t",
"/x/y/z/my>\" \"<constants".parse().unwrap(),
"#import </x/y/z/my>\" \"<constants>".into(),
),
(
" #import \t\t\t </x/y/z/my>\" \"<constants.wgsl> \t\t\t",
"/x/y/z/my>\" \"<constants.wgsl".parse().unwrap(),
"#import </x/y/z/my>\" \"<constants.wgsl>".into(),
),
// Non-sense, but a valid path nonetheless ¯\_(ツ)_/¯
("#import <<>>", "<>".parse().unwrap(), None),
// Technically valid non-sense yet again!
(
"#import <my_constants.wgsl> <my_other_constants.wgsl>",
"my_constants.wgsl> <my_other_constants.wgsl"
.parse()
.unwrap(),
None,
),
// Some more of that.
(
"#import <my_constants.wgsl> \t\t\t #import <my_other_constants.wgsl>",
"my_constants.wgsl> \t\t\t #import <my_other_constants.wgsl"
.parse()
.unwrap(),
None,
),
// Going into "absolutely terrifying" territory
(
"#import <my_multiline\r\npath.wgsl>",
"my_multiline\r\npath.wgsl".parse().unwrap(),
None,
),
];
let testcases = testcases
.into_iter()
.map(|(clause_str, path, clause_str_clean)| {
(clause_str, ImportClause::from(path), clause_str_clean)
});
for (clause_str, expected, expected_clause) in testcases {
eprintln!("test case: ({clause_str:?}, {expected:?})");
let clause = clause_str.parse::<ImportClause>().unwrap();
assert_eq!(expected, clause);
let clause_str_clean = clause.to_string();
if let Some(expected_clause) = expected_clause {
assert_eq!(expected_clause, clause_str_clean);
} else {
assert_eq!(clause_str, clause_str_clean);
}
}
}
#[test]
fn parsing_failure() {
let testcases = [
"#import <",
"#import <>",
"import my_constants",
"my_constants",
];
for s in testcases {
eprintln!("test case: {s:?}");
assert!(s.parse::<ImportClause>().is_err());
}
}
}
// ---
/// The recommended `FileResolver` type for the current platform/target.
#[cfg(load_shaders_from_disk)]
pub type RecommendedFileResolver = FileResolver<crate::OsFileSystem>;
/// The recommended `FileResolver` type for the current platform/target.
#[cfg(not(load_shaders_from_disk))]
pub type RecommendedFileResolver = FileResolver<&'static crate::MemFileSystem>;
/// Returns the recommended `FileResolver` for the current platform/target.
pub fn new_recommended() -> RecommendedFileResolver {
FileResolver::with_search_path(crate::get_filesystem(), SearchPath::from_env())
}
#[derive(Clone, Debug, Default)]
pub struct InterpolatedFile {
pub contents: String,
pub imports: HashSet<PathBuf>,
}
/// The `FileResolver` handles both resolving import clauses and doing the actual string
/// interpolation.
#[derive(Default)]
pub struct FileResolver<Fs> {
/// A handle to the filesystem being used.
/// Generally a `OsFileSystem` on native and a `MemFileSystem` on web and during tests.
fs: Fs,
/// The search path that we will go through when an import cannot be resolved neither
/// as an absolute path or a relative one.
search_path: SearchPath,
}
// Constructors
impl<Fs: FileSystem> FileResolver<Fs> {
pub fn new(fs: Fs) -> Self {
Self {
fs,
search_path: Default::default(),
}
}
pub fn with_search_path(fs: Fs, search_path: SearchPath) -> Self {
Self { fs, search_path }
}
}
impl<Fs: FileSystem> FileResolver<Fs> {
pub fn populate(&self, path: impl AsRef<Path>) -> anyhow::Result<InterpolatedFile> {
re_tracing::profile_function!();
fn populate_rec<Fs: FileSystem>(
this: &FileResolver<Fs>,
path: impl AsRef<Path>,
interp_files: &mut HashMap<PathBuf, Rc<InterpolatedFile>>,
path_stack: &mut Vec<PathBuf>,
visited_stack: &mut HashSet<PathBuf>,
) -> anyhow::Result<Rc<InterpolatedFile>> {
let path = path.as_ref().clean();
// Cycle detection
path_stack.push(path.clone());
ensure!(
visited_stack.insert(path.clone()),
"import cycle detected: {path_stack:?}"
);
// #pragma once
if interp_files.contains_key(&path) {
// Cycle detection
path_stack.pop().unwrap();
visited_stack.remove(&path);
return Ok(Default::default());
}
let contents = this.fs.read_to_string(&path)?;
// Using implicit Vec<Result> -> Result<Vec> collection.
let mut imports = HashSet::new();
let children: Result<Vec<_>, _> = contents
.lines()
.map(|line| {
if line.trim().starts_with(ImportClause::PREFIX) {
let clause = line.parse::<ImportClause>()?;
// We do not use `Path::parent` on purpose!
let cwd = path.join("..").clean();
let clause_path =
this.resolve_clause_path(cwd, &clause.path).ok_or_else(|| {
anyhow!("couldn't resolve import clause path at {:?}", clause.path)
})?;
imports.insert(clause_path.clone());
populate_rec(this, clause_path, interp_files, path_stack, visited_stack)
} else {
// Fake child, just the line itself.
Ok(Rc::new(InterpolatedFile {
contents: line.to_owned(),
..Default::default()
}))
}
})
.collect();
let children = children?;
let interp = children.into_iter().fold(
InterpolatedFile {
imports,
..Default::default()
},
|acc, child| InterpolatedFile {
contents: match (acc.contents.is_empty(), child.contents.is_empty()) {
(true, _) => child.contents.clone(),
(_, true) => acc.contents,
_ => [acc.contents.as_str(), child.contents.as_str()].join("\n"),
},
imports: acc.imports.union(&child.imports).cloned().collect(),
},
);
let interp = Rc::new(interp);
interp_files.insert(path.clone(), Rc::clone(&interp));
// Cycle detection
path_stack.pop().unwrap();
visited_stack.remove(&path);
Ok(interp)
}
let mut path_stack = Vec::new();
let mut visited_stack = HashSet::new();
let mut interp_files = HashMap::default();
populate_rec(
self,
path,
&mut interp_files,
&mut path_stack,
&mut visited_stack,
)
.map(|interp| (*interp).clone())
}
fn resolve_clause_path(
&self,
cwd: impl AsRef<Path>,
path: impl AsRef<Path>,
) -> Option<PathBuf> {
let path = path.as_ref().clean();
// The imported path is absolute and points to an existing file, let's import that.
if path.is_absolute() && self.fs.exists(&path) {
return path.into();
}
// The imported path looks relative. Try to join it with the importer's and see if
// that leads somewhere… if it does: import that.
{
let path = cwd.as_ref().join(&path).clean();
if self.fs.exists(&path) {
return path.into();
}
}
// If the imported path isn't relative to the importer's, then maybe it is relative
// with regards to one of the search paths: let's try there.
for dir in self.search_path.iter() {
let dir = dir.join(&path).clean();
if self.fs.exists(&dir) {
return dir.into();
}
}
None
}
}
// TODO(cmc): might want an actual test using `RERUN_SHADER_PATH`
#[cfg(test)]
mod tests_file_resolver {
use crate::MemFileSystem;
use unindent::unindent;
use super::*;
#[test]
fn acyclic_interpolation() {
let fs = MemFileSystem::get();
{
fs.create_dir_all("/shaders1/common").unwrap();
fs.create_dir_all("/shaders1/a/b/c/d").unwrap();
fs.create_file(
"/shaders1/common/shader1.wgsl",
unindent(
r#"
my first shader!
#import </shaders1/common/shader4.wgsl>
"#,
)
.into(),
)
.unwrap();
fs.create_file(
"/shaders1/a/b/shader2.wgsl",
unindent(
r#"
#import </shaders1/common/shader1.wgsl>
#import <../../common/shader1.wgsl>
#import </shaders1/a/b/c/d/shader3.wgsl>
#import <c/d/shader3.wgsl>
my second shader!
#import <common/shader1.wgsl>
#import <shader1.wgsl>
#import <shader3.wgsl>
#import <a/b/c/d/shader3.wgsl>
"#,
)
.into(),
)
.unwrap();
fs.create_file(
"/shaders1/a/b/c/d/shader3.wgsl",
unindent(
r#"
#import </shaders1/common/shader1.wgsl>
#import <../../../../common/shader1.wgsl>
my third shader!
#import <common/shader1.wgsl>
#import <shader1.wgsl>
"#,
)
.into(),
)
.unwrap();
fs.create_file(
"/shaders1/common/shader4.wgsl",
unindent(r#"my fourth shader!"#).into(),
)
.unwrap();
}
let resolver = FileResolver::with_search_path(fs, {
let mut search_path = SearchPath::default();
search_path.push("/shaders1");
search_path.push("/shaders1/common");
search_path.push("/shaders1/a/b/c/d");
search_path
});
for _ in 0..3 {
// ^^^^ just making sure the stateful stuff behaves correctly
let shader1_interp = resolver.populate("/shaders1/common/shader1.wgsl").unwrap();
// Shader 1: resolve
let mut imports = shader1_interp.imports.into_iter().collect::<Vec<_>>();
imports.sort();
let expected: Vec<PathBuf> = vec!["/shaders1/common/shader4.wgsl".into()];
assert_eq!(expected, imports);
// Shader 1: interpolate
let contents = shader1_interp.contents;
let expected = unindent(
r#"
my first shader!
my fourth shader!"#,
);
assert_eq!(expected, contents);
let shader2_interp = resolver.populate("/shaders1/a/b/shader2.wgsl").unwrap();
// Shader 2: resolve
let mut imports = shader2_interp.imports.into_iter().collect::<Vec<_>>();
imports.sort();
let expected: Vec<PathBuf> = vec![
"/shaders1/a/b/c/d/shader3.wgsl".into(),
"/shaders1/common/shader1.wgsl".into(),
"/shaders1/common/shader4.wgsl".into(),
];
assert_eq!(expected, imports);
// Shader 2: interpolate
let contents = shader2_interp.contents;
let expected = unindent(
r#"
my first shader!
my fourth shader!
my third shader!
my second shader!"#,
);
assert_eq!(expected, contents);
let shader3_interp = resolver.populate("/shaders1/a/b/c/d/shader3.wgsl").unwrap();
// Shader 3: resolve
let mut imports = shader3_interp.imports.into_iter().collect::<Vec<_>>();
imports.sort();
let expected: Vec<PathBuf> = vec![
"/shaders1/common/shader1.wgsl".into(),
"/shaders1/common/shader4.wgsl".into(),
];
assert_eq!(expected, imports);
// Shader 3: interpolate
let contents = shader3_interp.contents;
let expected = unindent(
r#"
my first shader!
my fourth shader!
my third shader!"#,
);
assert_eq!(expected, contents);
}
}
#[test]
#[allow(clippy::should_panic_without_expect)] // TODO(cmc): check error contents
#[should_panic]
fn cyclic_direct() {
let fs = MemFileSystem::get();
{
fs.create_dir_all("/shaders2").unwrap();
fs.create_file(
"/shaders2/shader1.wgsl",
unindent(
r#"
#import </shaders2/shader2.wgsl>
my first shader!
"#,
)
.into(),
)
.unwrap();
fs.create_file(
"/shaders2/shader2.wgsl",
unindent(
r#"
#import </shaders2/shader1.wgsl>
my second shader!
"#,
)
.into(),
)
.unwrap();
}
let resolver = FileResolver::new(fs);
resolver
.populate("/shaders2/shader1.wgsl")
.map_err(re_error::format)
.unwrap();
}
#[test]
#[allow(clippy::should_panic_without_expect)] // TODO(cmc): check error contents
#[should_panic]
fn cyclic_indirect() {
let fs = MemFileSystem::get();
{
fs.create_dir_all("/shaders3").unwrap();
fs.create_file(
"/shaders3/shader1.wgsl",
unindent(
r#"
#import </shaders3/shader2.wgsl>
my first shader!
"#,
)
.into(),
)
.unwrap();
fs.create_file(
"/shaders3/shader2.wgsl",
unindent(
r#"
#import </shaders3/shader3.wgsl>
my second shader!
"#,
)
.into(),
)
.unwrap();
fs.create_file(
"/shaders3/shader3.wgsl",
unindent(
r#"
#import </shaders3/shader1.wgsl>
my third shader!
"#,
)
.into(),
)
.unwrap();
}
let resolver = FileResolver::new(fs);
resolver
.populate("/shaders3/shader1.wgsl")
.map_err(re_error::format)
.unwrap();
}
}