1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
use std::{mem::size_of, ops::Range};

use ecolor::Rgba;
use smallvec::{smallvec, SmallVec};

use crate::{
    allocator::create_and_fill_uniform_buffer_batch,
    debug_label::DebugLabel,
    renderer::MeshRenderer,
    resource_managers::GpuTexture2D,
    wgpu_resources::{BindGroupDesc, BindGroupEntry, BufferDesc, GpuBindGroup, GpuBuffer},
    RenderContext, Rgba32Unmul,
};

/// Defines how mesh vertices are built.
pub mod mesh_vertices {
    use crate::wgpu_resources::VertexBufferLayout;

    /// Vertex buffer layouts describing how vertex data should be laid out.
    ///
    /// Needs to be kept in sync with `mesh_vertex.wgsl`.
    pub fn vertex_buffer_layouts() -> smallvec::SmallVec<[VertexBufferLayout; 4]> {
        // TODO(andreas): Compress normals. Afaik Octahedral Mapping is the best by far, see https://jcgt.org/published/0003/02/01/
        VertexBufferLayout::from_formats(
            [
                wgpu::VertexFormat::Float32x3, // position
                wgpu::VertexFormat::Unorm8x4,  // RGBA
                wgpu::VertexFormat::Float32x3, // normal
                wgpu::VertexFormat::Float32x2, // texcoord
            ]
            .into_iter(),
        )
    }

    /// Next vertex attribute index that can be used for another vertex buffer.
    pub fn next_free_shader_location() -> u32 {
        vertex_buffer_layouts()
            .iter()
            .flat_map(|layout| layout.attributes.iter())
            .max_by(|a1, a2| a1.shader_location.cmp(&a2.shader_location))
            .unwrap()
            .shader_location
            + 1
    }
}

#[derive(Clone)]
pub struct CpuMesh {
    pub label: DebugLabel,

    /// Non-empty array of vertex triangle indices.
    ///
    /// The length has to be a multiple of 3.
    pub triangle_indices: Vec<glam::UVec3>,

    /// Non-empty array of vertex positions.
    pub vertex_positions: Vec<glam::Vec3>,

    /// Per-vertex albedo color.
    /// Must be equal in length to [`Self::vertex_positions`].
    pub vertex_colors: Vec<Rgba32Unmul>,

    /// Must be equal in length to [`Self::vertex_positions`].
    /// Use ZERO for unshaded.
    pub vertex_normals: Vec<glam::Vec3>,

    /// Must be equal in length to [`Self::vertex_positions`].
    pub vertex_texcoords: Vec<glam::Vec2>,

    pub materials: SmallVec<[Material; 1]>,
}

impl CpuMesh {
    pub fn sanity_check(&self) -> Result<(), MeshError> {
        re_tracing::profile_function!();

        let Self {
            label: _,
            triangle_indices,
            vertex_positions,
            vertex_colors,
            vertex_normals,
            vertex_texcoords,
            materials: _,
        } = self;

        let num_pos = vertex_positions.len();
        let num_color = vertex_colors.len();
        let num_normals = vertex_normals.len();
        let num_texcoords = vertex_texcoords.len();

        if num_pos != num_color {
            return Err(MeshError::WrongNumberOfColors { num_pos, num_color });
        }
        if num_pos != num_normals {
            return Err(MeshError::WrongNumberOfNormals {
                num_pos,
                num_normals,
            });
        }
        if num_pos != num_texcoords {
            return Err(MeshError::WrongNumberOfTexcoord {
                num_pos,
                num_texcoords,
            });
        }
        if self.vertex_positions.is_empty() {
            return Err(MeshError::ZeroVertices);
        }

        if self.triangle_indices.is_empty() {
            return Err(MeshError::ZeroIndices);
        }

        for indices in triangle_indices {
            let max_index = indices.max_element();
            if num_pos <= max_index as usize {
                return Err(MeshError::IndexOutOfBounds {
                    num_pos,
                    index: max_index,
                });
            }
        }

        Ok(())
    }
}

#[derive(thiserror::Error, Debug)]
pub enum MeshError {
    #[error("Number of vertex positions {num_pos} differed from the number of vertex colors {num_color}")]
    WrongNumberOfColors { num_pos: usize, num_color: usize },

    #[error("Number of vertex positions {num_pos} differed from the number of vertex normals {num_normals}")]
    WrongNumberOfNormals { num_pos: usize, num_normals: usize },

    #[error("Number of vertex positions {num_pos} differed from the number of vertex tex-coords {num_texcoords}")]
    WrongNumberOfTexcoord {
        num_pos: usize,
        num_texcoords: usize,
    },

    #[error("Mesh has no vertices.")]
    ZeroVertices,

    #[error("Mesh has no triangle indices.")]
    ZeroIndices,

    #[error("Index {index} was out of bounds for {num_pos} vertex positions")]
    IndexOutOfBounds { num_pos: usize, index: u32 },

    #[error(transparent)]
    CpuWriteGpuReadError(#[from] crate::allocator::CpuWriteGpuReadError),
}

#[derive(Clone)]
pub struct Material {
    pub label: DebugLabel,

    /// Index range within the owning [`CpuMesh`] that should be rendered with this material.
    pub index_range: Range<u32>,

    /// Base color texture, also known as albedo.
    /// (not optional, needs to be at least a 1pix texture with a color!)
    pub albedo: GpuTexture2D,

    /// Factor applied to the decoded albedo color.
    pub albedo_factor: Rgba,
}

#[derive(Clone)]
pub struct GpuMesh {
    // It would be desirable to put both vertex and index buffer into the same buffer, BUT
    // WebGL doesn't allow us to do so! (see https://github.com/gfx-rs/wgpu/pull/3157)
    pub index_buffer: GpuBuffer,

    /// Buffer for all vertex data, subdivided in several sections for different vertex buffer bindings.
    /// See [`mesh_vertices`]
    pub vertex_buffer_combined: GpuBuffer,
    pub vertex_buffer_positions_range: Range<u64>,
    pub vertex_buffer_colors_range: Range<u64>,
    pub vertex_buffer_normals_range: Range<u64>,
    pub vertex_buffer_texcoord_range: Range<u64>,

    pub index_buffer_range: Range<u64>,

    /// Every mesh has at least one material.
    pub materials: SmallVec<[GpuMaterial; 1]>,
}

#[derive(Clone)]
pub struct GpuMaterial {
    /// Index range within the owning [`CpuMesh`] that should be rendered with this material.
    pub index_range: Range<u32>,

    pub bind_group: GpuBindGroup,
}

pub(crate) mod gpu_data {
    use crate::wgpu_buffer_types;

    /// Keep in sync with [`MaterialUniformBuffer`] in `instanced_mesh.wgsl`
    #[repr(C)]
    #[derive(Clone, Copy, bytemuck::Pod, bytemuck::Zeroable)]
    pub struct MaterialUniformBuffer {
        pub albedo_factor: wgpu_buffer_types::Vec4,
        pub end_padding: [wgpu_buffer_types::PaddingRow; 16 - 1],
    }
}

impl GpuMesh {
    // TODO(andreas): Take read-only context here and make uploads happen on staging belt.
    pub fn new(ctx: &RenderContext, data: &CpuMesh) -> Result<Self, MeshError> {
        re_tracing::profile_function!();

        data.sanity_check()?;

        re_log::trace!(
            "uploading new mesh named {:?} with {} vertices and {} triangles",
            data.label.get(),
            data.vertex_positions.len(),
            data.triangle_indices.len(),
        );

        // TODO(andreas): Have a variant that gets this from a stack allocator.
        let vb_positions_size = (data.vertex_positions.len() * size_of::<glam::Vec3>()) as u64;
        let vb_color_size = (data.vertex_colors.len() * size_of::<Rgba32Unmul>()) as u64;
        let vb_normals_size = (data.vertex_normals.len() * size_of::<glam::Vec3>()) as u64;
        let vb_texcoords_size = (data.vertex_texcoords.len() * size_of::<glam::Vec2>()) as u64;

        let vb_combined_size =
            vb_positions_size + vb_color_size + vb_normals_size + vb_texcoords_size;

        let pools = &ctx.gpu_resources;
        let device = &ctx.device;

        let vertex_buffer_combined = {
            let vertex_buffer_combined = pools.buffers.alloc(
                device,
                &BufferDesc {
                    label: format!("{} - vertices", data.label).into(),
                    size: vb_combined_size,
                    usage: wgpu::BufferUsages::VERTEX | wgpu::BufferUsages::COPY_DST,
                    mapped_at_creation: false,
                },
            );

            let mut staging_buffer = ctx.cpu_write_gpu_read_belt.lock().allocate::<u8>(
                &ctx.device,
                &ctx.gpu_resources.buffers,
                vb_combined_size as _,
            )?;
            staging_buffer.extend_from_slice(bytemuck::cast_slice(&data.vertex_positions))?;
            staging_buffer.extend_from_slice(bytemuck::cast_slice(&data.vertex_colors))?;
            staging_buffer.extend_from_slice(bytemuck::cast_slice(&data.vertex_normals))?;
            staging_buffer.extend_from_slice(bytemuck::cast_slice(&data.vertex_texcoords))?;
            staging_buffer.copy_to_buffer(
                ctx.active_frame.before_view_builder_encoder.lock().get(),
                &vertex_buffer_combined,
                0,
            )?;
            vertex_buffer_combined
        };

        let index_buffer_size = (size_of::<glam::UVec3>() * data.triangle_indices.len()) as u64;
        let index_buffer = {
            let index_buffer = pools.buffers.alloc(
                device,
                &BufferDesc {
                    label: format!("{} - indices", data.label).into(),
                    size: index_buffer_size,
                    usage: wgpu::BufferUsages::INDEX | wgpu::BufferUsages::COPY_DST,
                    mapped_at_creation: false,
                },
            );

            let mut staging_buffer = ctx.cpu_write_gpu_read_belt.lock().allocate::<glam::UVec3>(
                &ctx.device,
                &ctx.gpu_resources.buffers,
                data.triangle_indices.len(),
            )?;
            staging_buffer.extend_from_slice(bytemuck::cast_slice(&data.triangle_indices))?;
            staging_buffer.copy_to_buffer(
                ctx.active_frame.before_view_builder_encoder.lock().get(),
                &index_buffer,
                0,
            )?;
            index_buffer
        };

        let materials = {
            let uniform_buffer_bindings = create_and_fill_uniform_buffer_batch(
                ctx,
                format!("{} - material uniforms", data.label).into(),
                data.materials
                    .iter()
                    .map(|material| gpu_data::MaterialUniformBuffer {
                        albedo_factor: material.albedo_factor.into(),
                        end_padding: Default::default(),
                    }),
            );

            let mut materials = SmallVec::with_capacity(data.materials.len());

            // The bind group layout must be in sync with the mesh renderer.
            let mesh_bind_group_layout = ctx.renderer::<MeshRenderer>().bind_group_layout;

            for (material, uniform_buffer_binding) in data
                .materials
                .iter()
                .zip(uniform_buffer_bindings.into_iter())
            {
                let bind_group = pools.bind_groups.alloc(
                    device,
                    pools,
                    &BindGroupDesc {
                        label: material.label.clone(),
                        entries: smallvec![
                            BindGroupEntry::DefaultTextureView(material.albedo.handle()),
                            uniform_buffer_binding
                        ],
                        layout: mesh_bind_group_layout,
                    },
                );

                materials.push(GpuMaterial {
                    index_range: material.index_range.clone(),
                    bind_group,
                });
            }
            materials
        };

        let vb_colors_start = vb_positions_size;
        let vb_normals_start = vb_colors_start + vb_color_size;
        let vb_texcoord_start = vb_normals_start + vb_normals_size;

        Ok(Self {
            index_buffer,
            vertex_buffer_combined,
            vertex_buffer_positions_range: 0..vb_positions_size,
            vertex_buffer_colors_range: vb_colors_start..vb_normals_start,
            vertex_buffer_normals_range: vb_normals_start..vb_texcoord_start,
            vertex_buffer_texcoord_range: vb_texcoord_start..vb_combined_size,
            index_buffer_range: 0..index_buffer_size,
            materials,
        })
    }
}