1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
//! Line renderer for efficient rendering of many line(strips)
//!
//!
//! How it works:
//! =================
//!
//! Each drawn line strip consists of a series of quads and all quads are rendered in a single draw call.
//! The only data we upload are the user provided positions (the "skeleton" of the line so to speak) and line strip wide configurations.
//! The quads are oriented and spanned in a vertex shader.
//!
//! It is tempting to use instancing and store per-instance (==quad) data in a instance-stepped vertex buffer.
//! However, GPUs are notoriously bad at processing instances with a small batch size as
//! [various](https://gamedev.net/forums/topic/676540-fastest-way-to-draw-quads/5279146/)
//! [people](https://gamedev.net/forums/topic/702292-performance-fastest-quad-drawing/5406023/)
//! [point](https://www.reddit.com/r/vulkan/comments/le74sr/why_gpu_instancing_is_slow_for_small_meshes/)
//! [out](https://www.reddit.com/r/vulkan/comments/47kfve/instanced_rendering_performance/)
//! […](https://www.reddit.com/r/opengl/comments/q7yikr/how_to_draw_several_quads_through_instancing/).
//!
//! Instead, we use a single (un-instanced) triangle list draw call and use the vertex id to orient ourselves in the vertex shader
//! (e.g. the index of the current quad is `vertex_idx / 6` etc.).
//! Our triangle list topology pretends that there is only a single strip, but in reality we want to render several in one draw call.
//! So every time a new line strip starts (except on the first strip) we need to discard a quad by collapsing vertices into their predecessors.
//!
//! All data we fetch in the vertex shader is uploaded as textures in order to maintain WebGL compatibility.
//! (at the full webgpu feature level we could use raw buffers instead which are easier to handle and a better match for our access pattern)
//!
//! Data is provided in two separate textures, the "position data texture" and the "line strip texture".
//! The "line strip texture" contains packed information over properties that are global to a single strip (see `gpu_data::LineStripInfo`)
//! Data in the "position data texture" is laid out a follows (see `gpu_data::PositionRadius`):
//! ```raw
//!                   ___________________________________________________________________
//! position data    | pos, strip_idx | pos, strip_idx | pos, strip_idx | pos, strip_idx | …
//!                   ___________________________________________________________________
//! (vertex shader)  |             quad 0              |              quad 2             |
//!                                    ______________________________________________________________
//!                                   |               quad 1            |              quad 3        | …
//! ```
//!
//! Why not a triangle *strip* instead if *list*?
//! -----------------------------------------------
//!
//! As long as we're not able to restart the strip (requires indices!), we can't discard a quad in a triangle strip setup.
//! However, this could be solved with an index buffer which has the ability to restart triangle strips (something we haven't tried yet).
//!
//! Another much more tricky issue is handling of line joints:
//! Let's have a look at a corner between two line positions (line positions marked with `X`)
//! ```raw
//! o--------------------------o
//!                            /
//! X=================X       /
//!                  //      /
//! o---------o     //      /
//!          /     //      /
//!         o      X      o
//! ```
//! The problem is that the top right corner would move further and further outward as we decrease the angle of the joint.
//! Instead, we generate overlapping, detached quads and handle line joints as cut-outs in the fragment shader.
//!
//! Line start/end caps (arrows/etc.)
//! -----------------------------------------------
//! Yet another place where our triangle *strip* comes in handy is that we can take triangles from superfluous quads to form pointy arrows.
//! Again, we keep all the geometry calculating logic in the vertex shader.
//!
//! For all batches, independent whether we use caps or not our topology is as follow:
//!            _________________________________________________
//!            \  |                     |\  |                   |\
//!             \ |  … n strip quads …  | \ | … m strip quads … | \
//!              \|_____________________|__\|___________________|__\
//! (start cap triangle only)         (start+end triangle)              (end triangle only)
//!
//!
//! Things we might try in the future
//! ----------------------------------
//! * more line properties
//! * more per-position attributes
//! * experiment with indexed primitives to lower amount of vertices processed
//!    * note that this would let us remove the degenerated quads between lines, making the approach cleaner and removing the "restart bit"
//!

use std::{num::NonZeroU64, ops::Range};

use bitflags::bitflags;
use enumset::{enum_set, EnumSet};
use re_tracing::profile_function;
use smallvec::smallvec;

use crate::{
    allocator::create_and_fill_uniform_buffer_batch,
    draw_phases::{DrawPhase, OutlineMaskProcessor},
    include_shader_module,
    view_builder::ViewBuilder,
    wgpu_resources::{
        BindGroupDesc, BindGroupEntry, BindGroupLayoutDesc, GpuBindGroup, GpuBindGroupLayoutHandle,
        GpuRenderPipelineHandle, GpuRenderPipelinePoolAccessor, PipelineLayoutDesc, PoolError,
        RenderPipelineDesc,
    },
    DebugLabel, DepthOffset, LineDrawableBuilder, OutlineMaskPreference, PickingLayerObjectId,
    PickingLayerProcessor,
};

use super::{DrawData, DrawError, RenderContext, Renderer};

pub mod gpu_data {
    // Don't use `wgsl_buffer_types` since none of this data goes into a buffer, so its alignment rules don't apply.

    use crate::{size::SizeHalf, wgpu_buffer_types, Color32, PickingLayerObjectId};

    use super::LineStripFlags;

    #[repr(C, packed)]
    #[derive(Clone, Copy, bytemuck::Pod, bytemuck::Zeroable)]
    pub struct LineVertex {
        pub position: glam::Vec3,
        // TODO(andreas): If we limit ourselves to 65536 line strip (we do as of writing!), we get 16bit extra storage here.
        // We probably want to store accumulated line length in there so that we can do stippling in the fragment shader
        pub strip_index: u32,
    }
    // (unlike the fields in a uniform buffer)
    static_assertions::assert_eq_size!(LineVertex, glam::Vec4);

    impl LineVertex {
        /// Sentinel vertex used at the start and the end of the line vertex data texture to facilitate caps.
        pub const SENTINEL: Self = Self {
            position: glam::vec3(f32::MAX, f32::MAX, f32::MAX),
            strip_index: u32::MAX,
        };

        /// Number of sentinel vertices, one at the start and one at the end.
        pub const NUM_SENTINEL_VERTICES: usize = 2;
    }

    #[repr(C, packed)]
    #[derive(Clone, Copy, bytemuck::Pod, bytemuck::Zeroable)]
    pub struct LineStripInfo {
        pub color: Color32, // alpha unused right now
        pub stippling: u8,
        pub flags: LineStripFlags,
        pub radius: SizeHalf,
    }
    static_assertions::assert_eq_size!(LineStripInfo, [u32; 2]);

    impl Default for LineStripInfo {
        fn default() -> Self {
            Self {
                radius: crate::Size::new_ui_points(1.5).into(),
                color: Color32::WHITE,
                stippling: 0,
                flags: LineStripFlags::empty(),
            }
        }
    }

    /// Uniform buffer that changes once per draw data rendering.
    #[repr(C)]
    #[derive(Clone, Copy, bytemuck::Pod, bytemuck::Zeroable)]
    pub struct DrawDataUniformBuffer {
        pub radius_boost_in_ui_points: wgpu_buffer_types::F32RowPadded,
        pub end_padding: [wgpu_buffer_types::PaddingRow; 16 - 1],
    }

    /// Uniform buffer that changes for every batch of line strips.
    #[repr(C)]
    #[derive(Clone, Copy, bytemuck::Pod, bytemuck::Zeroable)]
    pub struct BatchUniformBuffer {
        pub world_from_obj: wgpu_buffer_types::Mat4,
        pub outline_mask_ids: wgpu_buffer_types::UVec2,
        pub picking_object_id: PickingLayerObjectId,

        pub depth_offset: f32,
        pub triangle_cap_length_factor: f32,
        pub triangle_cap_width_factor: f32,
        pub _padding: f32,

        pub end_padding: [wgpu_buffer_types::PaddingRow; 16 - 6],
    }
}

/// Internal, ready to draw representation of [`LineBatchInfo`]
#[derive(Clone)]
struct LineStripBatch {
    bind_group: GpuBindGroup,
    vertex_range: Range<u32>,
    active_phases: EnumSet<DrawPhase>,
}

/// A line drawing operation. Encompasses several lines, each consisting of a list of positions.
/// Expected to be recreated every frame.
#[derive(Clone)]
pub struct LineDrawData {
    bind_group_all_lines: Option<GpuBindGroup>,
    bind_group_all_lines_outline_mask: Option<GpuBindGroup>,
    batches: Vec<LineStripBatch>,
}

impl DrawData for LineDrawData {
    type Renderer = LineRenderer;
}

bitflags! {
    /// Property flags for a line strip
    ///
    /// Needs to be kept in sync with `lines.wgsl`
    #[repr(C)]
    #[derive(Copy, Clone, Default, bytemuck::Pod, bytemuck::Zeroable)]
    pub struct LineStripFlags : u8 {
        /// Puts a equilateral triangle at the end of the line strip (excludes other end caps).
        const FLAG_CAP_END_TRIANGLE = 0b0000_0001;

        /// Adds a round cap at the end of a line strip (excludes other end caps).
        const FLAG_CAP_END_ROUND = 0b0000_0010;

        /// By default, line caps end at the last/first position of the line strip.
        /// This flag makes end caps extend outwards.
        const FLAG_CAP_END_EXTEND_OUTWARDS = 0b0000_0100;

        /// Puts a equilateral triangle at the start of the line strip (excludes other start caps).
        const FLAG_CAP_START_TRIANGLE = 0b0000_1000;

        /// Adds a round cap at the start of a line strip (excludes other start caps).
        const FLAG_CAP_START_ROUND = 0b0001_0000;

        /// By default, line caps end at the last/first position of the line strip.
        /// This flag makes end caps extend outwards.
        const FLAG_CAP_START_EXTEND_OUTWARDS = 0b0010_0000;

        /// Enable color gradient across the line.
        ///
        /// TODO(andreas): Could be moved to per batch flags.
        const FLAG_COLOR_GRADIENT = 0b0100_0000;

        /// Forces spanning the line's quads as-if the camera was orthographic.
        ///
        /// This is useful for lines that are on a plane that is parallel to the camera:
        /// Without this flag, the lines will poke through the camera plane as they orient themselves towards the camera.
        /// Note that since distances to the camera are computed differently in orthographic mode, this changes how screen space sizes are computed.
        ///
        /// TODO(andreas): Could be moved to per batch flags.
        const FLAG_FORCE_ORTHO_SPANNING = 0b1000_0000;

        /// Combination of flags to extend lines outwards with round caps.
        const FLAGS_OUTWARD_EXTENDING_ROUND_CAPS =
            LineStripFlags::FLAG_CAP_START_ROUND.bits() |
            LineStripFlags::FLAG_CAP_END_ROUND.bits() |
            LineStripFlags::FLAG_CAP_START_EXTEND_OUTWARDS.bits() |
            LineStripFlags::FLAG_CAP_END_EXTEND_OUTWARDS.bits();
    }
}

/// Data that is valid for a batch of line strips.
pub struct LineBatchInfo {
    pub label: DebugLabel,

    /// Transformation applies to line positions
    ///
    /// TODO(andreas): We don't apply scaling to the radius yet. Need to pass a scaling factor like this in
    /// `let scale = Mat3::from(world_from_obj).determinant().abs().cbrt()`
    pub world_from_obj: glam::Affine3A,

    /// Number of vertices covered by this batch.
    ///
    /// The batch will start with the next vertex after the one the previous batch ended with.
    /// It is expected that this vertex is the first vertex of a new batch.
    pub line_vertex_count: u32,

    /// Optional outline mask setting for the entire batch.
    pub overall_outline_mask_ids: OutlineMaskPreference,

    /// Defines an outline mask for an individual vertex ranges (can span several line strips!)
    ///
    /// Vertex ranges are *not* relative within the current batch, but relates to the draw data vertex buffer.
    ///
    /// Having many of these individual outline masks can be slow as they require each their own uniform buffer & draw call.
    /// This feature is meant for a limited number of "extra selections"
    /// If an overall mask is defined as well, the per-vertex-range masks is overwriting the overall mask.
    pub additional_outline_mask_ids_vertex_ranges: Vec<(Range<u32>, OutlineMaskPreference)>,

    /// Picking object id that applies for the entire batch.
    pub picking_object_id: PickingLayerObjectId,

    /// Depth offset applied after projection.
    pub depth_offset: DepthOffset,

    /// Length factor as multiple of a line's radius applied to all triangle caps in this batch.
    ///
    /// This controls how far the "pointy end" of the triangle/arrow-head extends.
    /// (defaults to 4.0)
    pub triangle_cap_length_factor: f32,

    /// Width factor as multiple of a line's radius applied to all triangle caps in this batch.
    ///
    /// This controls how wide the triangle/arrow-head is orthogonal to the line's direction.
    /// (defaults to 2.0)
    pub triangle_cap_width_factor: f32,
}

impl Default for LineBatchInfo {
    fn default() -> Self {
        Self {
            label: "unknown_line_batch".into(),
            world_from_obj: glam::Affine3A::IDENTITY,
            line_vertex_count: 0,
            overall_outline_mask_ids: OutlineMaskPreference::NONE,
            additional_outline_mask_ids_vertex_ranges: Vec::new(),
            picking_object_id: PickingLayerObjectId::default(),
            depth_offset: 0,
            triangle_cap_length_factor: 4.0,
            triangle_cap_width_factor: 2.0,
        }
    }
}

#[derive(thiserror::Error, Debug, PartialEq, Eq)]
pub enum LineDrawDataError {
    #[error("Line vertex refers to unknown line strip.")]
    InvalidStripIndex,

    #[error(transparent)]
    PoolError(#[from] PoolError),

    #[error(transparent)]
    FailedTransferringDataToGpu(#[from] crate::allocator::CpuWriteGpuReadError),

    #[error(transparent)]
    DataTextureSourceWriteError(#[from] crate::allocator::DataTextureSourceWriteError),
}

impl LineDrawData {
    /// Transforms and uploads line strip data to be consumed by gpu.
    ///
    /// Try to bundle all line strips into a single draw data instance whenever possible.
    /// If you pass zero lines instances, subsequent drawing will do nothing.
    ///
    /// If no batches are passed, all lines are assumed to be in a single batch with identity transform.
    pub fn new(line_builder: LineDrawableBuilder<'_>) -> Result<Self, LineDrawDataError> {
        let LineDrawableBuilder {
            ctx,
            vertices_buffer,
            batches,
            strips_buffer,
            picking_instance_ids_buffer,
            radius_boost_in_ui_points_for_outlines,
        } = line_builder;

        let line_renderer = ctx.renderer::<LineRenderer>();

        if strips_buffer.is_empty() {
            return Ok(Self {
                bind_group_all_lines: None,
                bind_group_all_lines_outline_mask: None,
                batches: Vec::new(),
            });
        }

        let batches = if batches.is_empty() {
            vec![LineBatchInfo {
                label: "LineDrawData::fallback_batch".into(),
                line_vertex_count: vertices_buffer.len() as _,
                ..Default::default()
            }]
        } else {
            batches
        };

        const NUM_SENTINEL_VERTICES: usize = 2;

        let max_texture_dimension_2d = ctx.device.limits().max_texture_dimension_2d;
        let max_num_texels = max_texture_dimension_2d as usize * max_texture_dimension_2d as usize;
        let max_num_vertices = max_num_texels - NUM_SENTINEL_VERTICES;

        let position_texture = vertices_buffer.finish(
            wgpu::TextureFormat::Rgba32Float,
            "LineDrawData::position_texture",
        )?;
        let strip_data_texture = strips_buffer.finish(
            wgpu::TextureFormat::Rg32Uint,
            "LineDrawData::strip_data_texture",
        )?;
        let picking_instance_id_texture = picking_instance_ids_buffer.finish(
            wgpu::TextureFormat::Rg32Uint,
            "LineDrawData::picking_instance_id_texture",
        )?;

        let draw_data_uniform_buffer_bindings = create_and_fill_uniform_buffer_batch(
            ctx,
            "LineDrawData::DrawDataUniformBuffer".into(),
            [
                gpu_data::DrawDataUniformBuffer {
                    radius_boost_in_ui_points: 0.0.into(),
                    end_padding: Default::default(),
                },
                gpu_data::DrawDataUniformBuffer {
                    radius_boost_in_ui_points: radius_boost_in_ui_points_for_outlines.into(),
                    end_padding: Default::default(),
                },
            ]
            .into_iter(),
        );
        let bind_group_all_lines = ctx.gpu_resources.bind_groups.alloc(
            &ctx.device,
            &ctx.gpu_resources,
            &BindGroupDesc {
                label: "LineDrawData::bind_group_all_lines".into(),
                entries: smallvec![
                    BindGroupEntry::DefaultTextureView(position_texture.handle),
                    BindGroupEntry::DefaultTextureView(strip_data_texture.handle),
                    BindGroupEntry::DefaultTextureView(picking_instance_id_texture.handle),
                    draw_data_uniform_buffer_bindings[0].clone(),
                ],
                layout: line_renderer.bind_group_layout_all_lines,
            },
        );
        let bind_group_all_lines_outline_mask = ctx.gpu_resources.bind_groups.alloc(
            &ctx.device,
            &ctx.gpu_resources,
            &BindGroupDesc {
                label: "LineDrawData::bind_group_all_lines_outline_mask".into(),
                entries: smallvec![
                    BindGroupEntry::DefaultTextureView(position_texture.handle),
                    BindGroupEntry::DefaultTextureView(strip_data_texture.handle),
                    BindGroupEntry::DefaultTextureView(picking_instance_id_texture.handle),
                    draw_data_uniform_buffer_bindings[1].clone(),
                ],
                layout: line_renderer.bind_group_layout_all_lines,
            },
        );

        // Process batches
        let mut batches_internal = Vec::with_capacity(batches.len());
        {
            fn uniforms_from_batch_info(
                batch_info: &LineBatchInfo,
                outline_mask_ids: [u8; 2],
            ) -> gpu_data::BatchUniformBuffer {
                gpu_data::BatchUniformBuffer {
                    world_from_obj: batch_info.world_from_obj.into(),
                    outline_mask_ids: outline_mask_ids.into(),
                    picking_object_id: batch_info.picking_object_id,
                    depth_offset: batch_info.depth_offset as f32,
                    triangle_cap_length_factor: batch_info.triangle_cap_length_factor,
                    triangle_cap_width_factor: batch_info.triangle_cap_width_factor,
                    _padding: 0.0,
                    end_padding: Default::default(),
                }
            }

            let uniform_buffer_bindings = create_and_fill_uniform_buffer_batch(
                ctx,
                "lines batch uniform buffers".into(),
                batches.iter().map(|batch_info| {
                    uniforms_from_batch_info(
                        batch_info,
                        batch_info.overall_outline_mask_ids.0.unwrap_or_default(),
                    )
                }),
            );

            // Generate additional "micro batches" for each line vertex range that has a unique outline setting.
            // This is fairly costly if there's many, but easy and low-overhead if there's only few, which is usually what we expect!
            let mut uniform_buffer_bindings_mask_only_batches =
                create_and_fill_uniform_buffer_batch(
                    ctx,
                    "lines batch uniform buffers - mask only".into(),
                    batches
                        .iter()
                        .flat_map(|batch_info| {
                            batch_info
                                .additional_outline_mask_ids_vertex_ranges
                                .iter()
                                .map(|(_, mask)| {
                                    uniforms_from_batch_info(batch_info, mask.0.unwrap_or_default())
                                })
                        })
                        .collect::<Vec<_>>()
                        .into_iter(),
                )
                .into_iter();

            let mut start_vertex_for_next_batch = 0;
            for (batch_info, uniform_buffer_binding) in
                batches.iter().zip(uniform_buffer_bindings.into_iter())
            {
                let line_vertex_range_end = (start_vertex_for_next_batch
                    + batch_info.line_vertex_count)
                    .min(max_num_vertices as u32);
                let mut active_phases = enum_set![DrawPhase::Opaque | DrawPhase::PickingLayer];
                // Does the entire batch participate in the outline mask phase?
                if batch_info.overall_outline_mask_ids.is_some() {
                    active_phases.insert(DrawPhase::OutlineMask);
                }

                batches_internal.push(line_renderer.create_linestrip_batch(
                    ctx,
                    batch_info.label.clone(),
                    uniform_buffer_binding,
                    start_vertex_for_next_batch..line_vertex_range_end,
                    active_phases,
                ));

                for (range, _) in &batch_info.additional_outline_mask_ids_vertex_ranges {
                    batches_internal.push(line_renderer.create_linestrip_batch(
                        ctx,
                        format!("{} strip-only {range:?}", batch_info.label).into(),
                        uniform_buffer_bindings_mask_only_batches.next().unwrap(),
                        range.clone(),
                        enum_set![DrawPhase::OutlineMask],
                    ));
                }

                start_vertex_for_next_batch = line_vertex_range_end;
            }
        }

        Ok(Self {
            bind_group_all_lines: Some(bind_group_all_lines),
            bind_group_all_lines_outline_mask: Some(bind_group_all_lines_outline_mask),
            batches: batches_internal,
        })
    }
}

pub struct LineRenderer {
    render_pipeline_color: GpuRenderPipelineHandle,
    render_pipeline_picking_layer: GpuRenderPipelineHandle,
    render_pipeline_outline_mask: GpuRenderPipelineHandle,
    bind_group_layout_all_lines: GpuBindGroupLayoutHandle,
    bind_group_layout_batch: GpuBindGroupLayoutHandle,
}

impl LineRenderer {
    fn create_linestrip_batch(
        &self,
        ctx: &RenderContext,
        label: DebugLabel,
        uniform_buffer_binding: BindGroupEntry,
        line_vertex_range: Range<u32>,
        active_phases: EnumSet<DrawPhase>,
    ) -> LineStripBatch {
        // TODO(andreas): There should be only a single bindgroup with dynamic indices for all batches.
        //                  (each batch would then know which dynamic indices to use in the bindgroup)
        let bind_group = ctx.gpu_resources.bind_groups.alloc(
            &ctx.device,
            &ctx.gpu_resources,
            &BindGroupDesc {
                label,
                entries: smallvec![uniform_buffer_binding],
                layout: self.bind_group_layout_batch,
            },
        );

        LineStripBatch {
            bind_group,
            // We spawn a quad for every line skeleton vertex. Naturally, this yields one extra quad in total.
            // Which is rather convenient because we need to ensure there are start and end triangles,
            // so just from a number-of=vertices perspective this is correct already and the shader can take care of offsets.
            vertex_range: (line_vertex_range.start * 6)..(line_vertex_range.end * 6),
            active_phases,
        }
    }
}

impl Renderer for LineRenderer {
    type RendererDrawData = LineDrawData;

    fn participated_phases() -> &'static [DrawPhase] {
        &[
            DrawPhase::Opaque,
            DrawPhase::OutlineMask,
            DrawPhase::PickingLayer,
        ]
    }

    fn create_renderer(ctx: &RenderContext) -> Self {
        profile_function!();

        let render_pipelines = &ctx.gpu_resources.render_pipelines;

        let bind_group_layout_all_lines = ctx.gpu_resources.bind_group_layouts.get_or_create(
            &ctx.device,
            &BindGroupLayoutDesc {
                label: "LineRenderer::bind_group_layout_all_lines".into(),
                entries: vec![
                    wgpu::BindGroupLayoutEntry {
                        binding: 0,
                        visibility: wgpu::ShaderStages::VERTEX,
                        ty: wgpu::BindingType::Texture {
                            sample_type: wgpu::TextureSampleType::Float { filterable: false },
                            view_dimension: wgpu::TextureViewDimension::D2,
                            multisampled: false,
                        },
                        count: None,
                    },
                    wgpu::BindGroupLayoutEntry {
                        binding: 1,
                        visibility: wgpu::ShaderStages::VERTEX,
                        ty: wgpu::BindingType::Texture {
                            sample_type: wgpu::TextureSampleType::Uint,
                            view_dimension: wgpu::TextureViewDimension::D2,
                            multisampled: false,
                        },
                        count: None,
                    },
                    wgpu::BindGroupLayoutEntry {
                        binding: 2,
                        visibility: wgpu::ShaderStages::VERTEX,
                        ty: wgpu::BindingType::Texture {
                            sample_type: wgpu::TextureSampleType::Uint,
                            view_dimension: wgpu::TextureViewDimension::D2,
                            multisampled: false,
                        },
                        count: None,
                    },
                    wgpu::BindGroupLayoutEntry {
                        binding: 3,
                        visibility: wgpu::ShaderStages::VERTEX,
                        ty: wgpu::BindingType::Buffer {
                            ty: wgpu::BufferBindingType::Uniform,
                            has_dynamic_offset: false,
                            min_binding_size: NonZeroU64::new(std::mem::size_of::<
                                gpu_data::DrawDataUniformBuffer,
                            >() as _),
                        },
                        count: None,
                    },
                ],
            },
        );

        let bind_group_layout_batch = ctx.gpu_resources.bind_group_layouts.get_or_create(
            &ctx.device,
            &BindGroupLayoutDesc {
                label: "LineRenderer::bind_group_layout_batch".into(),
                entries: vec![wgpu::BindGroupLayoutEntry {
                    binding: 0,
                    visibility: wgpu::ShaderStages::VERTEX | wgpu::ShaderStages::FRAGMENT,
                    ty: wgpu::BindingType::Buffer {
                        ty: wgpu::BufferBindingType::Uniform,
                        has_dynamic_offset: false,
                        min_binding_size: NonZeroU64::new(std::mem::size_of::<
                            gpu_data::BatchUniformBuffer,
                        >() as _),
                    },
                    count: None,
                }],
            },
        );

        let pipeline_layout = ctx.gpu_resources.pipeline_layouts.get_or_create(
            ctx,
            &PipelineLayoutDesc {
                label: "LineRenderer::pipeline_layout".into(),
                entries: vec![
                    ctx.global_bindings.layout,
                    bind_group_layout_all_lines,
                    bind_group_layout_batch,
                ],
            },
        );

        let shader_module = ctx
            .gpu_resources
            .shader_modules
            .get_or_create(ctx, &include_shader_module!("../../shader/lines.wgsl"));

        let render_pipeline_desc_color = RenderPipelineDesc {
            label: "LineRenderer::render_pipeline_color".into(),
            pipeline_layout,
            vertex_entrypoint: "vs_main".into(),
            vertex_handle: shader_module,
            fragment_entrypoint: "fs_main".into(),
            fragment_handle: shader_module,
            vertex_buffers: smallvec![],
            render_targets: smallvec![Some(ViewBuilder::MAIN_TARGET_ALPHA_TO_COVERAGE_COLOR_STATE)],
            primitive: wgpu::PrimitiveState {
                topology: wgpu::PrimitiveTopology::TriangleList,
                ..Default::default()
            },
            depth_stencil: ViewBuilder::MAIN_TARGET_DEFAULT_DEPTH_STATE,
            multisample: wgpu::MultisampleState {
                // We discard pixels to do the round cutout, therefore we need to calculate our own sampling mask.
                alpha_to_coverage_enabled: true,
                ..ViewBuilder::MAIN_TARGET_DEFAULT_MSAA_STATE
            },
        };
        let render_pipeline_color =
            render_pipelines.get_or_create(ctx, &render_pipeline_desc_color);
        let render_pipeline_picking_layer = render_pipelines.get_or_create(
            ctx,
            &RenderPipelineDesc {
                label: "LineRenderer::render_pipeline_picking_layer".into(),
                fragment_entrypoint: "fs_main_picking_layer".into(),
                render_targets: smallvec![Some(PickingLayerProcessor::PICKING_LAYER_FORMAT.into())],
                depth_stencil: PickingLayerProcessor::PICKING_LAYER_DEPTH_STATE,
                multisample: PickingLayerProcessor::PICKING_LAYER_MSAA_STATE,
                ..render_pipeline_desc_color.clone()
            },
        );
        let render_pipeline_outline_mask = render_pipelines.get_or_create(
            ctx,
            &RenderPipelineDesc {
                label: "LineRenderer::render_pipeline_outline_mask".into(),
                pipeline_layout,
                vertex_entrypoint: "vs_main".into(),
                vertex_handle: shader_module,
                fragment_entrypoint: "fs_main_outline_mask".into(),
                fragment_handle: shader_module,
                vertex_buffers: smallvec![],
                render_targets: smallvec![Some(OutlineMaskProcessor::MASK_FORMAT.into())],
                primitive: wgpu::PrimitiveState {
                    topology: wgpu::PrimitiveTopology::TriangleList,
                    ..Default::default()
                },
                depth_stencil: OutlineMaskProcessor::MASK_DEPTH_STATE,
                // Alpha to coverage doesn't work with the mask integer target.
                multisample: OutlineMaskProcessor::mask_default_msaa_state(ctx.device_caps().tier),
            },
        );

        Self {
            render_pipeline_color,
            render_pipeline_picking_layer,
            render_pipeline_outline_mask,
            bind_group_layout_all_lines,
            bind_group_layout_batch,
        }
    }

    fn draw(
        &self,
        render_pipelines: &GpuRenderPipelinePoolAccessor<'_>,
        phase: DrawPhase,
        pass: &mut wgpu::RenderPass<'_>,
        draw_data: &Self::RendererDrawData,
    ) -> Result<(), DrawError> {
        let (pipeline_handle, bind_group_all_lines) = match phase {
            DrawPhase::OutlineMask => (
                self.render_pipeline_outline_mask,
                &draw_data.bind_group_all_lines_outline_mask,
            ),
            DrawPhase::Opaque => (self.render_pipeline_color, &draw_data.bind_group_all_lines),
            DrawPhase::PickingLayer => (
                self.render_pipeline_picking_layer,
                &draw_data.bind_group_all_lines,
            ),
            _ => unreachable!("We were called on a phase we weren't subscribed to: {phase:?}"),
        };
        let Some(bind_group_all_lines) = bind_group_all_lines else {
            return Ok(()); // No lines submitted.
        };

        let pipeline = render_pipelines.get(pipeline_handle)?;

        pass.set_pipeline(pipeline);
        pass.set_bind_group(1, bind_group_all_lines, &[]);

        for batch in &draw_data.batches {
            if batch.active_phases.contains(phase) {
                pass.set_bind_group(2, &batch.bind_group, &[]);
                pass.draw(batch.vertex_range.clone(), 0..1);
            }
        }

        Ok(())
    }
}