1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
//! For an overview of image data interpretation check `re_video`'s decoder docs!

use super::yuv_converter::{
    YuvFormatConversionTask, YuvMatrixCoefficients, YuvPixelLayout, YuvRange,
};
use crate::{
    renderer::DrawError,
    wgpu_resources::{GpuTexture, TextureDesc},
    DebugLabel, RenderContext, Texture2DBufferInfo,
};

/// Image data format that can be converted to a wgpu texture.
// TODO(andreas): Right now this combines both color space and pixel format. Consider separating them similar to how we do on user facing APIs.
#[allow(non_camel_case_types)]
#[derive(Clone, Copy, Debug)]
pub enum SourceImageDataFormat {
    /// The source format is already in a wgpu compatible format.
    ///
    /// ⚠️ Only because a format is listed in `wgpu::TextureFormat` doesn't mean we can use it on the currently active backend.
    /// TODO(andreas): This is a temporary measure until we cover what rerun covers.
    ///                 We'd really like incoming data to not reason with [`wgpu::TextureFormat`] since it's so hard to know
    ///                 what's appropriate & available for a given device.
    WgpuCompatible(wgpu::TextureFormat),

    /// YUV (== `YCbCr`) formats, typically using chroma downsampling.
    ///
    /// Does not handle chroma sample locations.
    Yuv {
        layout: YuvPixelLayout,
        coefficients: YuvMatrixCoefficients,
        range: YuvRange,
    },
    //
    // TODO(#7608): Add rgb (3 channels!) formats.
}

impl From<wgpu::TextureFormat> for SourceImageDataFormat {
    fn from(format: wgpu::TextureFormat) -> Self {
        Self::WgpuCompatible(format)
    }
}

/// Error that can occur when converting image data to a texture.
#[derive(thiserror::Error, Debug, Clone, PartialEq, Eq)]
pub enum ImageDataToTextureError {
    #[error("Texture {0:?} has zero width or height!")]
    ZeroSize(DebugLabel),

    #[error(
        "Texture {label:?} was {width}x{height}, larger than the max of {max_texture_dimension_2d}"
    )]
    TooLarge {
        label: DebugLabel,
        width: u32,
        height: u32,
        max_texture_dimension_2d: u32,
    },

    #[error(
        "Invalid data length for texture {label:?}. Expected {expected} bytes, got {actual} bytes"
    )]
    InvalidDataLength {
        label: DebugLabel,
        expected: usize,
        actual: usize,
    },

    #[error(transparent)]
    CpuWriteGpuReadError(#[from] crate::allocator::CpuWriteGpuReadError),

    #[error("Texture {label:?} has a format {format:?} that data can't be transferred to!")]
    UnsupportedFormatForTransfer {
        label: DebugLabel,
        format: wgpu::TextureFormat,
    },

    #[error("Gpu-based conversion for texture {label:?} did not succeed: {err}")]
    GpuBasedConversionError { label: DebugLabel, err: DrawError },

    #[error("Texture {label:?} has invalid texture usage flags: {actual_usage:?}, expected at least {required_usage:?}")]
    InvalidTargetTextureUsageFlags {
        label: DebugLabel,
        actual_usage: wgpu::TextureUsages,
        required_usage: wgpu::TextureUsages,
    },

    #[error("Texture {label:?} has invalid texture format: {actual_format:?}, expected at least {required_format:?}")]
    InvalidTargetTextureFormat {
        label: DebugLabel,
        actual_format: wgpu::TextureFormat,
        required_format: wgpu::TextureFormat,
    },

    // TODO(andreas): As we stop using `wgpu::TextureFormat` for input, this should become obsolete.
    #[error("Unsupported texture format {0:?}")]
    UnsupportedTextureFormat(wgpu::TextureFormat),
}

/// Describes image data for the purpose of creating a 2D texture.
///
/// Arbitrary (potentially gpu based) conversions may be performed to upload the data to the GPU.
pub struct ImageDataDesc<'a> {
    /// If this desc is not used for a texture update, this label is used for the target texture.
    /// Otherwise, it may still used for any intermediate resources that may be required during the conversion process.
    pub label: DebugLabel,

    /// Data for the highest mipmap level.
    ///
    /// Data is expected to be tightly packed.
    /// I.e. it is *not* padded according to wgpu buffer->texture transfer rules, padding will happen on the fly if necessary.
    /// TODO(andreas): This should be a kind of factory function/builder instead which gets target memory passed in.
    pub data: std::borrow::Cow<'a, [u8]>,
    pub format: SourceImageDataFormat,

    /// The size of the resulting output texture / the semantic size of the image data.
    ///
    /// The distinction is in particular important for planar formats.
    /// Which may be represented as a larger texture than the image they represent.
    /// With the output always being a ("mainstream" gpu readable) texture format, the output texture's
    /// width/height is the semantic width/height of the image data!
    pub width_height: [u32; 2],
    //generate_mip_maps: bool, // TODO(andreas): generate mipmaps!
}

impl ImageDataDesc<'_> {
    fn validate(
        &self,
        limits: &wgpu::Limits,
        target_texture_desc: &TextureDesc,
    ) -> Result<(), ImageDataToTextureError> {
        let Self {
            label,
            data,
            format,
            width_height,
        } = self;

        if !target_texture_desc
            .usage
            .contains(self.target_texture_usage_requirements())
        {
            return Err(ImageDataToTextureError::InvalidTargetTextureUsageFlags {
                label: target_texture_desc.label.clone(),
                actual_usage: target_texture_desc.usage,
                required_usage: self.target_texture_usage_requirements(),
            });
        }
        if target_texture_desc.format != self.target_texture_format() {
            return Err(ImageDataToTextureError::InvalidTargetTextureFormat {
                label: target_texture_desc.label.clone(),
                actual_format: target_texture_desc.format,
                required_format: self.target_texture_format(),
            });
        }

        if width_height[0] == 0 || width_height[1] == 0 {
            return Err(ImageDataToTextureError::ZeroSize(label.clone()));
        }

        let max_texture_dimension_2d = limits.max_texture_dimension_2d;
        if width_height[0] > max_texture_dimension_2d || width_height[1] > max_texture_dimension_2d
        {
            return Err(ImageDataToTextureError::TooLarge {
                label: label.clone(),
                width: width_height[0],
                height: width_height[1],
                max_texture_dimension_2d,
            });
        }

        let num_pixels = width_height[0] as usize * width_height[1] as usize;
        let expected_num_bytes = match format {
            SourceImageDataFormat::WgpuCompatible(format) => {
                num_pixels
                    * format
                        .block_copy_size(None)
                        .ok_or(ImageDataToTextureError::UnsupportedTextureFormat(*format))?
                        as usize
            }
            SourceImageDataFormat::Yuv { layout: format, .. } => {
                format.num_data_buffer_bytes(*width_height)
            }
        };

        // TODO(andreas): Nv12 needs height divisible by 2?
        if data.len() != expected_num_bytes {
            return Err(ImageDataToTextureError::InvalidDataLength {
                label: label.clone(),
                expected: expected_num_bytes,
                actual: data.len(),
            });
        }

        Ok(())
    }

    /// The texture usages required in order to store this image data.
    pub fn target_texture_usage_requirements(&self) -> wgpu::TextureUsages {
        match self.format {
            SourceImageDataFormat::WgpuCompatible(_) => wgpu::TextureUsages::COPY_DST, // Data arrives via raw data copy.
            SourceImageDataFormat::Yuv { .. } => {
                YuvFormatConversionTask::REQUIRED_TARGET_TEXTURE_USAGE_FLAGS
            }
        }
    }

    /// The texture format required in order to store this image data.
    pub fn target_texture_format(&self) -> wgpu::TextureFormat {
        match self.format {
            SourceImageDataFormat::WgpuCompatible(format) => format,
            SourceImageDataFormat::Yuv { .. } => YuvFormatConversionTask::OUTPUT_FORMAT,
        }
    }

    /// Creates a texture that can hold the image data.
    pub fn create_target_texture(
        &self,
        ctx: &RenderContext,
        texture_usages: wgpu::TextureUsages,
    ) -> GpuTexture {
        ctx.gpu_resources.textures.alloc(
            &ctx.device,
            &TextureDesc {
                label: self.label.clone(),
                size: wgpu::Extent3d {
                    width: self.width_height[0],
                    height: self.width_height[1],
                    depth_or_array_layers: 1,
                },
                mip_level_count: 1, // No mipmapping support yet.
                sample_count: 1,
                dimension: wgpu::TextureDimension::D2,
                format: self.target_texture_format(),
                usage: self.target_texture_usage_requirements() | texture_usages,
            },
        )
    }
}

/// Takes raw image data and transfers & converts it to a GPU texture.
///
/// Schedules render passes to convert the data to a samplable textures if needed.
///
/// Generally, we currently do *not* use sRGB converting formats like [`wgpu::TextureFormat::Rgba8UnormSrgb`] in order to…
/// * have the same shader code path for high precision formats (e.g. an f16 texture that _still_ encodes sRGB data)
/// * handle alpha pre-multiply on the fly (needs to happen before sRGB decode to linear)
///
/// Implementation note:
/// Since we're targeting WebGL, all data has always to be uploaded into textures (we can't use raw buffers!).
/// Buffer->Texture copies have restrictions on row padding, so any approach where we first
/// allocate gpu readable memory and hand it to the user would make the API a lot more complicated.
pub fn transfer_image_data_to_texture(
    ctx: &RenderContext,
    image_data: ImageDataDesc<'_>,
    target_texture: &GpuTexture,
) -> Result<(), ImageDataToTextureError> {
    re_tracing::profile_function!();

    image_data.validate(&ctx.device.limits(), &target_texture.creation_desc)?;

    let ImageDataDesc {
        label,
        data,
        format: source_format,
        width_height: output_width_height,
    } = image_data;

    // Determine size of the texture the image data is uploaded into.
    // Reminder: We can't use raw buffers because of WebGL compatibility.
    let [data_texture_width, data_texture_height] = match source_format {
        SourceImageDataFormat::WgpuCompatible(_) => output_width_height,
        SourceImageDataFormat::Yuv { layout, .. } => {
            layout.data_texture_width_height(output_width_height)
        }
    };
    let data_texture_format = match source_format {
        SourceImageDataFormat::WgpuCompatible(format) => format,
        SourceImageDataFormat::Yuv { layout, .. } => layout.data_texture_format(),
    };

    // Allocate gpu belt data and upload it.
    let data_texture_label = match source_format {
        SourceImageDataFormat::WgpuCompatible(_) => label.clone(),
        SourceImageDataFormat::Yuv { .. } => format!("{label}_source_data").into(),
    };

    let data_texture = match source_format {
        // Needs intermediate data texture.
        SourceImageDataFormat::Yuv { .. } => ctx.gpu_resources.textures.alloc(
            &ctx.device,
            &TextureDesc {
                label: data_texture_label,
                size: wgpu::Extent3d {
                    width: data_texture_width,
                    height: data_texture_height,
                    depth_or_array_layers: 1,
                },
                mip_level_count: 1, // We don't have mipmap level generation yet!
                sample_count: 1,
                dimension: wgpu::TextureDimension::D2,
                format: data_texture_format,
                usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
            },
        ),

        // Target is directly written to.
        SourceImageDataFormat::WgpuCompatible(_) => target_texture.clone(),
    };

    copy_data_to_texture(ctx, &data_texture, data.as_ref())?;

    // Build a converter task, feeding in the raw data.
    let converter_task = match source_format {
        SourceImageDataFormat::WgpuCompatible(_) => {
            // No further conversion needed, we're done here!
            return Ok(());
        }
        SourceImageDataFormat::Yuv {
            layout,
            coefficients,
            range,
        } => YuvFormatConversionTask::new(
            ctx,
            layout,
            range,
            coefficients,
            &data_texture,
            target_texture,
        ),
    };

    // Once there's different gpu based conversions, we should probably trait-ify this so we can keep the basic steps.
    // Note that we execute the task right away, but the way things are set up (by means of using the `Renderer` framework)
    // it would be fairly easy to schedule this differently!
    converter_task
        .convert_input_data_to_texture(ctx)
        .map_err(|err| ImageDataToTextureError::GpuBasedConversionError { label, err })
}

fn copy_data_to_texture(
    render_ctx: &RenderContext,
    data_texture: &GpuTexture,
    data: &[u8],
) -> Result<(), ImageDataToTextureError> {
    re_tracing::profile_function!();

    let buffer_info =
        Texture2DBufferInfo::new(data_texture.texture.format(), data_texture.texture.size());

    let mut cpu_write_gpu_read_belt = render_ctx.cpu_write_gpu_read_belt.lock();
    let mut gpu_read_buffer = cpu_write_gpu_read_belt.allocate::<u8>(
        &render_ctx.device,
        &render_ctx.gpu_resources.buffers,
        buffer_info.buffer_size_padded as usize,
    )?;

    if buffer_info.buffer_size_padded as usize == data.len() {
        re_tracing::profile_scope!("bulk_copy");

        // Fast path: Just copy the data over as-is.
        gpu_read_buffer.extend_from_slice(data)?;
    } else {
        re_tracing::profile_scope!("row_by_row_copy");

        // Copy row by row in order to jump over padding bytes.
        let bytes_per_row_unpadded = buffer_info.bytes_per_row_unpadded as usize;
        let num_padding_bytes_per_row =
            buffer_info.bytes_per_row_padded as usize - bytes_per_row_unpadded;
        debug_assert!(
            num_padding_bytes_per_row > 0,
            "No padding bytes, but the unpadded buffer size is not equal to the unpadded buffer."
        );

        for row in 0..data_texture.texture.size().height as usize {
            gpu_read_buffer.extend_from_slice(
                &data[(row * bytes_per_row_unpadded)
                    ..(row * bytes_per_row_unpadded + bytes_per_row_unpadded)],
            )?;
            gpu_read_buffer.add_n(0, num_padding_bytes_per_row)?;
        }
    }

    let mut before_view_builder_encoder =
        render_ctx.active_frame.before_view_builder_encoder.lock();
    gpu_read_buffer
        .copy_to_texture2d_entire_first_layer(before_view_builder_encoder.get(), data_texture)?;

    Ok(())
}