1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
use smallvec::smallvec;
use crate::{
allocator::create_and_fill_uniform_buffer,
include_shader_module,
renderer::{screen_triangle_vertex_shader, DrawData, DrawError, Renderer},
wgpu_resources::{
BindGroupDesc, BindGroupEntry, BindGroupLayoutDesc, GpuBindGroup, GpuBindGroupLayoutHandle,
GpuRenderPipelineHandle, GpuTexture, PipelineLayoutDesc, RenderPipelineDesc,
},
RenderContext,
};
/// Supported chroma subsampling input formats.
///
/// We use `YUV`/`YCbCr`/`YPbPr` interchangeably and usually just call it `YUV`.
///
/// According to this [source](https://www.retrosix.wiki/yuv-vs-ycbcr-vs-rgb-color-space/):
/// * `YUV` is an analog signal
/// * `YCbCr` is scaled and offsetted version of YUV, used in digital signals (we denote this as "limited range YUV")
/// * `YPbPr` is the physical component cabel to transmit `YCbCr`
///
/// Actual use in the wild seems to be all over the place.
/// For instance `OpenCV` uses `YCbCr` when talking about the full range and YUV when talking about
/// limited range. [Source](https://docs.opencv.org/4.x/de/d25/imgproc_color_conversions.html):
/// > RGB <-> YCrCb JPEG [...] Y, Cr, and Cb cover the whole value range.
/// > RGB <-> YUV with subsampling [...] with resulting values Y [16, 235], U and V [16, 240] centered at 128.
///
/// For more on YUV ranges see [`YuvRange`].
///
/// Naming schema:
/// * every time a plane starts add a `_`
/// * end with `4xy` for 4:x:y subsampling.
///
/// This picture gives a great overview of how to interpret the 4:x:y naming scheme for subsampling:
/// <https://en.wikipedia.org/wiki/Chroma_subsampling#Sampling_systems_and_ratios/>
///
/// Keep indices in sync with `yuv_converter.wgsl`
#[allow(non_camel_case_types)]
#[derive(Clone, Copy, Debug)]
pub enum YuvPixelLayout {
// ---------------------------
// Planar formats
// ---------------------------
//
/// 4:4:4 no chroma downsampling with 3 separate planes.
/// Also known as `I444`
///
/// Expects single channel data texture format.
///
/// ```text
/// width
/// __________
/// | |
/// height | Y |
/// | |
/// |_________|
/// | |
/// height | U |
/// | |
/// |_________|
/// | |
/// height | V |
/// | |
/// |_________|
/// ```
Y_U_V444 = 0,
/// 4:2:2 subsampling with 3 separate planes.
/// Also known as `I422`
///
/// Expects single channel data texture format.
///
/// Each data texture row in U & V section contains two rows
/// of U/V respectively, since there's a total of (width/2) * (height/2) U & V samples
///
/// ```text
/// width
/// __________
/// | |
/// height | Y |
/// | |
/// |_________|
/// height/2 | U |
/// |_________|
/// height/2 | V |
/// |_________|
/// ```
Y_U_V422 = 1,
/// 4:2:0 subsampling with 3 separate planes.
/// Also known as `I420`
///
/// Expects single channel data texture format.
///
/// Each data texture row in U & V section contains two rows
/// of U/V respectively, since there's a total of (width/2) * height U & V samples
///
/// ```text
/// width
/// __________
/// | |
/// height | Y |
/// | |
/// |_________|
/// height/4 |___◌̲U____|
/// height/4 |___◌̲V____|
/// ```
Y_U_V420 = 2,
// ---------------------------
// Semi-planar formats
// ---------------------------
//
/// 4:2:0 subsampling with a separate Y plane, followed by a UV plane.
/// Also known as `NV12` (although `NV12` usually also implies the limited range).
///
/// Expects single channel data texture format.
///
/// First comes entire image in Y in one plane,
/// followed by a plane with interleaved lines ordered as U0, V0, U1, V1, etc.
///
/// ```text
/// width
/// __________
/// | |
/// height | Y |
/// | |
/// |_________|
/// height/2 | U,V,U,… |
/// |_________|
/// ```
Y_UV420 = 100,
// ---------------------------
// Interleaved formats
// ---------------------------
//
/// YUV 4:2:2 subsampling, single plane.
///
/// Expects single channel data texture format.
///
/// The order of the channels is Y0, U0, Y1, V0, all in the same plane.
///
/// ```text
/// width * 2
/// __________________
/// | |
/// height | Y0, U0, Y1, V0… |
/// |_________________|
/// ```
YUYV422 = 200,
// ---------------------------
// Monochrome formats
// ---------------------------
//
/// 4:0:0, single plane of chroma only.
/// Also known as I400
///
/// Expects single channel data texture format.
///
/// Note that we still convert this to RGBA, for convenience.
///
/// ```text
/// width
/// __________
/// | |
/// height | Y |
/// | |
/// |_________|
/// ```
Y400 = 300,
}
impl std::fmt::Display for YuvPixelLayout {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Y_U_V444 => write!(f, "4:4:4 (planar)"),
Self::Y_U_V422 => write!(f, "4:2:2 (planar)"),
Self::Y_U_V420 => write!(f, "4:2:0 (planar)"),
Self::Y_UV420 => write!(f, "4:2:0 (semi-planar)"),
Self::YUYV422 => write!(f, "4:2:2 (interleaved"),
Self::Y400 => write!(f, "4:0:0"),
}
}
}
/// Yuv matrix coefficients that determine how a YUV image is meant to be converted to RGB.
///
/// A rigorious definition of the yuv conversion matrix would still require to define
/// the transfer characteristics & color primaries of the resulting RGB space.
/// See [`re_video::decode`]'s documentation.
///
/// However, at this point we generally assume that no further processing is needed after the transform.
/// This is acceptable for most non-HDR content because of the following properties of `Bt709`/`Bt601`/ sRGB:
/// * Bt709 & sRGB primaries are practically identical
/// * Bt601 PAL & Bt709 color primaries are the same (with some slight differences for Bt709 NTSC)
/// * Bt709 & sRGB transfer function are almost identical (and the difference is widely ignored)
///
/// (sources: <https://en.wikipedia.org/wiki/Rec._709>, <https://en.wikipedia.org/wiki/Rec._601>)
/// …which means for the moment we pretty much only care about the (actually quite) different YUV conversion matrices!
#[derive(Clone, Copy, Debug)]
pub enum YuvMatrixCoefficients {
/// Identity matrix, interpret YUV as GBR.
Identity = 0,
/// BT.601 (aka. SDTV, aka. Rec.601)
///
/// Wiki: <https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion/>
Bt601 = 1,
/// BT.709 (aka. HDTV, aka. Rec.709)
///
/// Wiki: <https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.709_conversion/>
///
/// These are the same primaries we usually assume and use for all our rendering
/// since they are the same primaries used by sRGB.
/// <https://en.wikipedia.org/wiki/Rec._709#Relationship_to_sRGB/>
/// The OETF/EOTF function (<https://en.wikipedia.org/wiki/Transfer_functions_in_imaging>) is different,
/// but for all other purposes they are the same.
/// (The only reason for us to convert to optical units ("linear" instead of "gamma") is for
/// lighting & tonemapping where we typically start out with an sRGB image!)
Bt709 = 2,
//
// Not yet supported. These vary a lot more from the other two!
//
// /// BT.2020 (aka. PQ, aka. Rec.2020)
// ///
// /// Wiki: <https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.2020_conversion/>
// BT2020_ConstantLuminance,
// BT2020_NonConstantLuminance,
}
impl std::fmt::Display for YuvMatrixCoefficients {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Identity => write!(f, "identity"),
Self::Bt601 => write!(f, "BT.601"),
Self::Bt709 => write!(f, "BT.709"),
}
}
}
/// Expected range of YUV values.
///
/// Keep indices in sync with `yuv_converter.wgsl`
#[derive(Clone, Copy, Debug, Default)]
pub enum YuvRange {
/// Use limited range YUV, i.e. for 8bit data, Y is valid in [16, 235] and U/V [16, 240].
///
/// This is by far the more common YUV range.
// TODO(andreas): What about higher bit ranges?
// This range says https://www.reddit.com/r/ffmpeg/comments/uiugfc/comment/i7f4wyp/
// 64-940 for Y and 64-960 for chroma.
#[default]
Limited = 0,
/// Use full range YUV with all components ranging from 0 to 255 for 8bit or higher otherwise.
Full = 1,
}
impl std::fmt::Display for YuvRange {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Limited => write!(f, "limited"),
Self::Full => write!(f, "full"),
}
}
}
impl YuvPixelLayout {
/// Given the dimensions of the output picture, what are the expected dimensions of the input data texture.
pub fn data_texture_width_height(&self, [decoded_width, decoded_height]: [u32; 2]) -> [u32; 2] {
match self {
Self::Y_U_V444 => [decoded_width, decoded_height * 3],
Self::Y_U_V422 => [decoded_width, decoded_height * 2],
Self::Y_U_V420 | Self::Y_UV420 => [decoded_width, decoded_height + decoded_height / 2],
Self::YUYV422 => [decoded_width * 2, decoded_height],
Self::Y400 => [decoded_width, decoded_height],
}
}
/// What format the input data texture is expected to be in.
pub fn data_texture_format(&self) -> wgpu::TextureFormat {
// TODO(andreas): How to deal with higher precision formats here?
//
// Our shader currently works with 8 bit integer formats here since while
// _technically_ YUV formats have nothing to do with concrete bit depth,
// practically there's underlying expectation for 8 bits per channel
// at least as long as the data is Bt.709 or Bt.601.
// In other words: The conversions implementations we have today expect 0-255 as the value range.
#[allow(clippy::match_same_arms)]
match self {
// Only thing that makes sense for 8 bit planar data is the R8Uint format.
Self::Y_U_V444 | Self::Y_U_V422 | Self::Y_U_V420 => wgpu::TextureFormat::R8Uint,
// Same for planar
Self::Y_UV420 => wgpu::TextureFormat::R8Uint,
// Interleaved have opportunities here!
// TODO(andreas): Why not use [`wgpu::TextureFormat::Rg8Uint`] here?
Self::YUYV422 => wgpu::TextureFormat::R8Uint,
// Monochrome have only one channel anyways.
Self::Y400 => wgpu::TextureFormat::R8Uint,
}
}
/// Size of the buffer needed to create the data texture, i.e. the raw input data.
pub fn num_data_buffer_bytes(&self, decoded_width: [u32; 2]) -> usize {
let data_texture_width_height = self.data_texture_width_height(decoded_width);
let data_texture_format = self.data_texture_format();
(data_texture_format
.block_copy_size(None)
.expect("data texture formats are expected to be trivial")
* data_texture_width_height[0]
* data_texture_width_height[1]) as usize
}
}
mod gpu_data {
use crate::wgpu_buffer_types;
#[repr(C)]
#[derive(Clone, Copy, bytemuck::Pod, bytemuck::Zeroable)]
pub struct UniformBuffer {
/// Uses [`super::YuvPixelLayout`].
pub yuv_layout: u32,
/// Uses [`super::YuvMatrixCoefficients`].
pub yuv_matrix_coefficients: u32,
pub target_texture_size: [u32; 2],
/// Uses [`super::YuvRange`].
pub yuv_range: wgpu_buffer_types::U32RowPadded,
pub _end_padding: [wgpu_buffer_types::PaddingRow; 16 - 2],
}
}
/// A work item for the subsampling converter.
pub struct YuvFormatConversionTask {
bind_group: GpuBindGroup,
target_texture: GpuTexture,
}
impl DrawData for YuvFormatConversionTask {
type Renderer = YuvFormatConverter;
}
impl YuvFormatConversionTask {
/// Format that a target texture must have in order to be used as output of this converter.
///
/// sRGB encoded 8 bit texture.
///
/// Not using [`wgpu::TextureFormat::Rgba8UnormSrgb`] since consumers typically consume this
/// texture with software EOTF ("to linear") for more flexibility.
pub const OUTPUT_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Rgba8Unorm;
/// Usage flags that a target texture must have in order to be used as output of this converter.
pub const REQUIRED_TARGET_TEXTURE_USAGE_FLAGS: wgpu::TextureUsages =
wgpu::TextureUsages::RENDER_ATTACHMENT;
/// Creates a new conversion task that can be used with [`YuvFormatConverter`].
///
/// Does *not* validate that the input data has the expected format,
/// see methods of [`YuvPixelLayout`] for details.
pub fn new(
ctx: &RenderContext,
yuv_layout: YuvPixelLayout,
yuv_range: YuvRange,
yuv_matrix_coefficients: YuvMatrixCoefficients,
input_data: &GpuTexture,
target_texture: &GpuTexture,
) -> Self {
let target_label = target_texture.creation_desc.label.clone();
let renderer = ctx.renderer::<YuvFormatConverter>();
let uniform_buffer = create_and_fill_uniform_buffer(
ctx,
format!("{target_label}_conversion").into(),
gpu_data::UniformBuffer {
yuv_layout: yuv_layout as _,
yuv_matrix_coefficients: yuv_matrix_coefficients as _,
target_texture_size: [
target_texture.creation_desc.size.width,
target_texture.creation_desc.size.height,
],
yuv_range: (yuv_range as u32).into(),
_end_padding: Default::default(),
},
);
let bind_group = ctx.gpu_resources.bind_groups.alloc(
&ctx.device,
&ctx.gpu_resources,
&BindGroupDesc {
label: "RectangleInstance::bind_group".into(),
entries: smallvec![
uniform_buffer,
BindGroupEntry::DefaultTextureView(input_data.handle),
],
layout: renderer.bind_group_layout,
},
);
Self {
bind_group,
target_texture: target_texture.clone(),
}
}
/// Runs the conversion from the input texture data.
pub fn convert_input_data_to_texture(self, ctx: &RenderContext) -> Result<(), DrawError> {
// TODO(andreas): Does this have to be on the global view encoder?
// If this ever becomes a problem we could easily schedule this to another encoder as long as
// we guarantee that the conversion is enqueued before the resulting texture is used.
// Given that we already have this neatly encapsulated work package this would be quite easy to do!
let mut encoder = ctx.active_frame.before_view_builder_encoder.lock();
let mut pass = encoder
.get()
.begin_render_pass(&wgpu::RenderPassDescriptor {
label: self.target_texture.creation_desc.label.get(),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &self.target_texture.default_view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color::BLACK),
store: wgpu::StoreOp::Store,
},
})],
..Default::default()
});
ctx.renderer::<YuvFormatConverter>().draw(
&ctx.gpu_resources.render_pipelines.resources(),
crate::draw_phases::DrawPhase::Opaque, // Don't care about the phase.
&mut pass,
&self,
)
}
}
/// Converter for chroma subsampling formats.
///
/// Takes chroma subsampled data and draws to a fullscreen sRGB output texture.
/// Implemented as a [`Renderer`] in order to make use of the existing mechanisms for storing renderer data.
/// (we need some place to lazily create the render pipeline, store a handle to it and encapsulate the draw logic!)
pub struct YuvFormatConverter {
render_pipeline: GpuRenderPipelineHandle,
bind_group_layout: GpuBindGroupLayoutHandle,
}
impl Renderer for YuvFormatConverter {
type RendererDrawData = YuvFormatConversionTask;
fn create_renderer(ctx: &RenderContext) -> Self {
let vertex_handle = screen_triangle_vertex_shader(ctx);
let bind_group_layout = ctx.gpu_resources.bind_group_layouts.get_or_create(
&ctx.device,
&BindGroupLayoutDesc {
label: "YuvFormatConverter".into(),
entries: vec![
// Uniform buffer with some information.
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: (std::mem::size_of::<gpu_data::UniformBuffer>()
as u64)
.try_into()
.ok(),
},
count: None,
},
// Input data texture.
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Uint,
},
count: None,
},
],
},
);
let pipeline_layout = ctx.gpu_resources.pipeline_layouts.get_or_create(
ctx,
&PipelineLayoutDesc {
label: "YuvFormatConverter".into(),
// Note that this is a fairly unusual layout for us with the first entry
// not being the globally set bind group!
entries: vec![bind_group_layout],
},
);
let shader_modules = &ctx.gpu_resources.shader_modules;
let render_pipeline = ctx.gpu_resources.render_pipelines.get_or_create(
ctx,
&RenderPipelineDesc {
label: "TestTriangle::render_pipeline".into(),
pipeline_layout,
vertex_entrypoint: "main".into(),
vertex_handle,
fragment_entrypoint: "fs_main".into(),
fragment_handle: shader_modules.get_or_create(
ctx,
&include_shader_module!("../../shader/conversions/yuv_converter.wgsl"),
),
vertex_buffers: smallvec![],
render_targets: smallvec![Some(YuvFormatConversionTask::OUTPUT_FORMAT.into())],
primitive: wgpu::PrimitiveState::default(),
depth_stencil: None,
multisample: wgpu::MultisampleState::default(),
},
);
Self {
render_pipeline,
bind_group_layout,
}
}
fn draw(
&self,
render_pipelines: &crate::wgpu_resources::GpuRenderPipelinePoolAccessor<'_>,
_phase: crate::draw_phases::DrawPhase,
pass: &mut wgpu::RenderPass<'_>,
draw_data: &Self::RendererDrawData,
) -> Result<(), DrawError> {
let pipeline = render_pipelines.get(self.render_pipeline)?;
pass.set_pipeline(pipeline);
pass.set_bind_group(0, &draw_data.bind_group, &[]);
pass.draw(0..3, 0..1);
Ok(())
}
fn participated_phases() -> &'static [crate::draw_phases::DrawPhase] {
// Doesn't participate in regular rendering.
&[]
}
}