1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
//! Transformation utilities.
//!
//! Some space definitions to keep in mind:
//!
//! Texture coordinates:
//! * origin top left
//! * full texture ([left; right], [top; bottom]):
//! ([0; 1], [0; 1])
//!
//! NDC:
//! * origin center
//! * full screen ([left; right], [top; bottom]):
//! ([-1; 1], [1; -1])
//!
//! Pixel coordinates:
//! * origin top left
//! * full screen ([left; right], [top; bottom]):
//! ([0; `screen_extent.x`], [0; `screen_extent.y`])
use crate::rect::RectF32;
/// Transforms texture coordinates to normalized device coordinates (NDC).
#[inline]
pub fn ndc_from_texcoord(texcoord: glam::Vec2) -> glam::Vec2 {
glam::vec2(texcoord.x * 2.0 - 1.0, 1.0 - texcoord.y * 2.0)
}
/// Transforms texture coordinates to normalized device coordinates (NDC).
#[inline]
pub fn ndc_from_pixel(pixel_coord: glam::Vec2, screen_extent: glam::UVec2) -> glam::Vec2 {
glam::vec2(
pixel_coord.x / screen_extent.x as f32 * 2.0 - 1.0,
1.0 - pixel_coord.y / screen_extent.y as f32 * 2.0,
)
}
/// Defines a transformation from a rectangular region of interest into a rectangular target region.
///
/// This is "pan and scan".
///
/// Transforms the range of `region_of_interest` to the range of `region`.
#[derive(Clone, Debug)]
pub struct RectTransform {
/// The region of the scene that should be visible.
pub region_of_interest: RectF32,
/// The full scene.
pub region: RectF32,
}
impl RectTransform {
/// No-op rect transform that transforms from a unit rectangle to a unit rectangle.
pub const IDENTITY: Self = Self {
region_of_interest: RectF32::UNIT,
region: RectF32::UNIT,
};
/// Computes a transformation matrix that applies the rect transform to the NDC space.
///
/// This matrix is expected to be the left most transformation in the vertex transformation chain.
/// It causes the area described by `region_of_interest` to be mapped to the area described by `region`.
/// Meaning, that `region` represents the full screen of the NDC space.
///
/// This means that only the relation of the rectangles in `RectTransform` is important.
/// Scaling or moving both rectangles by the same amount does not change the result.
pub fn to_ndc_scale_and_translation(&self) -> glam::Mat4 {
// It's easier to think in texcoord space, and then transform to NDC.
// This texcoord rect specifies the portion of the screen that should become the entire range of the NDC screen.
let texcoord_rect = RectF32 {
min: (self.region_of_interest.min - self.region.min) / self.region.extent,
extent: self.region_of_interest.extent / self.region.extent,
};
let texcoord_rect_min = texcoord_rect.min;
let texcoord_rect_max = texcoord_rect.max();
// y axis is flipped in NDC, therefore we need to flip the y axis of the rect.
let rect_min_ndc = ndc_from_texcoord(glam::vec2(texcoord_rect_min.x, texcoord_rect_max.y));
let rect_max_ndc = ndc_from_texcoord(glam::vec2(texcoord_rect_max.x, texcoord_rect_min.y));
let scale = 2.0 / (rect_max_ndc - rect_min_ndc);
let translation = -0.5 * (rect_min_ndc + rect_max_ndc);
glam::Mat4::from_scale(scale.extend(1.0))
* glam::Mat4::from_translation(translation.extend(0.0))
}
pub fn scale(&self) -> glam::Vec2 {
self.region_of_interest.extent / self.region.extent
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
pub fn to_ndc_scale_and_translation() {
let region = RectF32 {
min: glam::vec2(1.0, 1.0),
extent: glam::vec2(2.0, 3.0),
};
// Identity
{
let rect_transform = RectTransform {
region_of_interest: region,
region,
};
let identity = rect_transform.to_ndc_scale_and_translation();
assert_eq!(identity, glam::Mat4::IDENTITY);
}
// Scale
{
let scale_factor = glam::vec2(2.0, 0.25);
let rect_transform = RectTransform {
region_of_interest: RectF32 {
// Move the roi to the middle of the region.
min: region.center() - region.extent * scale_factor * 0.5,
extent: region.extent * scale_factor,
},
region,
};
let scale = rect_transform.to_ndc_scale_and_translation();
assert_eq!(
scale,
glam::Mat4::from_scale(1.0 / scale_factor.extend(1.0))
);
assert_eq!(rect_transform.scale(), scale_factor);
}
// Translation
{
let translation_vec = glam::vec2(1.0, 2.0);
let rect_transform = RectTransform {
region_of_interest: RectF32 {
min: region.min + translation_vec * region.extent,
extent: region.extent,
},
region,
};
let translation = rect_transform.to_ndc_scale_and_translation();
assert_eq!(
translation,
glam::Mat4::from_translation(
glam::vec3(-translation_vec.x, translation_vec.y, 0.0) * 2.0
)
);
assert_eq!(rect_transform.scale(), glam::Vec2::ONE);
}
// Scale + translation
{
let scale_factor = glam::vec2(2.0, 0.25);
let translation_vec = glam::vec2(1.0, 2.0);
let rect_transform = RectTransform {
region_of_interest: RectF32 {
// Move the roi to the middle of the region and then apply translation
min: region.center() - region.extent * scale_factor * 0.5
+ translation_vec * region.extent,
extent: region.extent * scale_factor,
},
region,
};
let scale_and_translation = rect_transform.to_ndc_scale_and_translation();
assert_eq!(
scale_and_translation,
glam::Mat4::from_scale(1.0 / scale_factor.extend(1.0))
* glam::Mat4::from_translation(
glam::vec3(-translation_vec.x, translation_vec.y, 0.0) * 2.0
)
);
assert_eq!(rect_transform.scale(), scale_factor);
}
}
}