1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
use parking_lot::RwLock;
use std::sync::Arc;
use crate::{
allocator::{create_and_fill_uniform_buffer, GpuReadbackIdentifier},
context::{RenderContext, Renderers},
draw_phases::{
DrawPhase, OutlineConfig, OutlineMaskProcessor, PickingLayerError, PickingLayerProcessor,
ScreenshotProcessor,
},
global_bindings::FrameUniformBuffer,
queueable_draw_data::QueueableDrawData,
renderer::{CompositorDrawData, DebugOverlayDrawData},
transform::RectTransform,
wgpu_resources::{
GpuBindGroup, GpuRenderPipelinePoolAccessor, GpuTexture, PoolError, TextureDesc,
},
DebugLabel, RectInt, Rgba,
};
#[derive(thiserror::Error, Debug)]
pub enum ViewBuilderError {
#[error("Screenshot was already scheduled.")]
ScreenshotAlreadyScheduled,
#[error("Picking rectangle readback was already scheduled.")]
PickingRectAlreadyScheduled,
#[error(transparent)]
InvalidDebugOverlay(#[from] crate::renderer::DebugOverlayError),
}
/// The highest level rendering block in `re_renderer`.
/// Used to build up/collect various resources and then send them off for rendering of a single view.
pub struct ViewBuilder {
setup: ViewTargetSetup,
queued_draws: Vec<QueueableDrawData>,
// TODO(andreas): Consider making "render processors" a "thing" by establishing a form of hardcoded/limited-flexibility render-graph
outline_mask_processor: Option<OutlineMaskProcessor>,
screenshot_processor: Option<ScreenshotProcessor>,
picking_processor: Option<PickingLayerProcessor>,
}
struct ViewTargetSetup {
name: DebugLabel,
bind_group_0: GpuBindGroup,
main_target_msaa: GpuTexture,
main_target_resolved: GpuTexture,
depth_buffer: GpuTexture,
frame_uniform_buffer_content: FrameUniformBuffer,
resolution_in_pixel: [u32; 2],
}
/// [`ViewBuilder`] that can be shared between threads.
///
/// Innermost field is an Option, so it can be consumed for `composite`.
pub type SharedViewBuilder = Arc<RwLock<Option<ViewBuilder>>>;
/// Configures the camera placement in the orthographic frustum,
/// as well as the coordinate system convention.
#[derive(Debug, Clone, Copy)]
pub enum OrthographicCameraMode {
/// Puts the view space origin into the middle of the screen.
///
/// Near plane is at z==0, everything with view space z>0 is clipped.
///
/// This is best for regular 3D content.
///
/// Uses `RUB` (X=Right, Y=Up, Z=Back)
NearPlaneCenter,
/// Puts the view space origin at the top-left corner of the orthographic frustum and inverts the y axis,
/// such that the bottom-right corner is at `glam::vec3(vertical_world_size * aspect_ratio, vertical_world_size, 0.0)` in view space.
///
/// Near plane is at z==-far_plane_distance, allowing the same z range both negative and positive.
///
/// This means that for an identity camera, world coordinates map directly to pixel coordinates
/// (if [`Projection::Orthographic::vertical_world_size`] is set to the y resolution).
/// Best for pure 2D content.
///
/// Uses `RDF` (X=Right, Y=Down, Z=Forward)
TopLeftCornerAndExtendZ,
}
/// How we project from 3D to 2D.
#[derive(Debug, Clone, Copy)]
pub enum Projection {
/// Perspective camera looking along the negative z view space axis.
Perspective {
/// Viewing angle in view space y direction (which is the vertical screen axis) in radian.
vertical_fov: f32,
/// Distance of the near plane.
near_plane_distance: f32,
/// Aspect ratio of the perspective transformation.
///
/// This is typically just resolution.y / resolution.x.
/// Setting this to anything else is mostly useful when panning & zooming within a fixed transformation.
aspect_ratio: f32,
},
/// Orthographic projection with the camera position at the near plane's center,
/// looking along the negative z view space axis.
Orthographic {
camera_mode: OrthographicCameraMode,
/// Size of the orthographic camera view space y direction (which is the vertical screen axis).
vertical_world_size: f32,
/// Distance of the far plane to the camera.
far_plane_distance: f32,
},
}
impl Projection {
fn projection_from_view(self, resolution_in_pixel: [u32; 2]) -> glam::Mat4 {
match self {
Self::Perspective {
vertical_fov,
near_plane_distance,
aspect_ratio,
} => {
// We use infinite reverse-z projection matrix
// * great precision both with floating point and integer: https://developer.nvidia.com/content/depth-precision-visualized
// * no need to worry about far plane
glam::Mat4::perspective_infinite_reverse_rh(
vertical_fov,
aspect_ratio,
near_plane_distance,
)
}
Self::Orthographic {
camera_mode,
vertical_world_size,
far_plane_distance,
} => {
let aspect_ratio = resolution_in_pixel[0] as f32 / resolution_in_pixel[1] as f32;
let horizontal_world_size = vertical_world_size * aspect_ratio;
// Note that we inverse z (by swapping near and far plane) to be consistent with our perspective projection.
match camera_mode {
OrthographicCameraMode::NearPlaneCenter => glam::Mat4::orthographic_rh(
-0.5 * horizontal_world_size,
0.5 * horizontal_world_size,
-0.5 * vertical_world_size,
0.5 * vertical_world_size,
far_plane_distance,
0.0,
),
OrthographicCameraMode::TopLeftCornerAndExtendZ => glam::Mat4::orthographic_rh(
0.0,
horizontal_world_size,
vertical_world_size,
0.0,
far_plane_distance,
-far_plane_distance,
),
}
}
}
}
fn tan_half_fov(&self) -> glam::Vec2 {
match self {
Self::Perspective {
vertical_fov,
aspect_ratio,
..
} => {
// Calculate ratio between screen size and screen distance.
// Great for getting directions from normalized device coordinates.
// (btw. this is the same as [1.0 / projection_from_view[0].x, 1.0 / projection_from_view[1].y])
glam::vec2(
(vertical_fov * 0.5).tan() * aspect_ratio,
(vertical_fov * 0.5).tan(),
)
}
Self::Orthographic { .. } => glam::vec2(f32::MAX, f32::MAX), // Can't use infinity in shaders
}
}
}
/// Basic configuration for a target view.
#[derive(Debug, Clone)]
pub struct TargetConfiguration {
pub name: DebugLabel,
/// The viewport resolution in physical pixels.
pub resolution_in_pixel: [u32; 2],
pub view_from_world: re_math::IsoTransform,
pub projection_from_view: Projection,
/// Defines a viewport transformation from the projected space to the final image space.
///
/// This can be used to implement pan & zoom independent of the camera projection.
/// Meaning that this transform allows you to zoom in on a portion of a perspectively projected
/// scene.
///
/// Note only the relation of the rectangles in `RectTransform` is important.
/// Scaling or moving both rectangles by the same amount does not change the result.
///
/// Internally, this is used to transform the normalized device coordinates to the given portion.
/// This transform is applied to the projection matrix.
pub viewport_transformation: RectTransform,
/// How many pixels are there per point.
///
/// I.e. the UI zoom factor.
/// Note that this does not affect any of the camera & projection properties and is only used
/// whenever point sizes were explicitly specified.
pub pixels_per_point: f32,
pub outline_config: Option<OutlineConfig>,
/// If true, the `composite` step will blend the image with the background.
///
/// Otherwise, this step will overwrite whatever was there before, drawing the view builder's result
/// as an opaque rectangle.
pub blend_with_background: bool,
}
impl Default for TargetConfiguration {
fn default() -> Self {
Self {
name: "default view".into(),
resolution_in_pixel: [100, 100],
view_from_world: Default::default(),
projection_from_view: Projection::Perspective {
vertical_fov: 70.0 * std::f32::consts::TAU / 360.0,
near_plane_distance: 0.01,
aspect_ratio: 1.0,
},
viewport_transformation: RectTransform::IDENTITY,
pixels_per_point: 1.0,
outline_config: None,
blend_with_background: false,
}
}
}
impl ViewBuilder {
/// Color format used for the main target of the view builder.
///
/// Eventually we'll want to make this an HDR format and apply tonemapping during composite.
/// However, note that it is easy to run into subtle MSAA quality issues then:
/// Applying MSAA resolve before tonemapping is problematic as it means we're doing msaa in linear.
/// This is especially problematic at bright/dark edges where we may loose "smoothness"!
/// For a nice illustration see [this blog post by MRP](https://therealmjp.github.io/posts/msaa-overview/)
/// We either would need to keep the MSAA target and tonemap it, or
/// apply a manual resolve where we inverse-tonemap non-fully-covered pixel before averaging.
/// (an optimized variant of this is described [by AMD here](https://gpuopen.com/learn/optimized-reversible-tonemapper-for-resolve/))
/// In any case, this gets us onto a potentially much costlier rendering path, especially for tiling GPUs.
pub const MAIN_TARGET_COLOR_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Rgba8UnormSrgb;
/// Use this color state when targeting the main target with alpha-to-coverage.
///
/// If blending with the background is enabled, we need alpha to indicate how much we overwrite the background.
/// (i.e. when we do blending of the screen target with whatever was there during [`Self::composite`].)
/// However, when using alpha-to-coverage, we need alpha to _also_ indicate the coverage of the pixel from
/// which the samples are derived. What we'd like to happen is:
/// * use alpha to indicate coverage == number of samples written to
/// * write alpha==1.0 for each active sample despite what we set earlier
/// This way, we'd get the correct alpha and end up with pre-multipltiplied color values during MSAA resolve,
/// just like with opaque geometry!
/// OpenGL exposes this as `GL_SAMPLE_ALPHA_TO_ONE`, Vulkan as `alphaToOne`. Unfortunately though, WebGPU does not support this!
/// Instead, what happens is that alpha has a double meaning: Coverage _and_ alpha of all written samples.
/// This means that anti-aliased edges (== alpha < 1.0) will _always_ creates "holes" into the target texture
/// even if there was already an opaque object prior.
/// To work around this, we accumulate alpha values with an additive blending operation, so that previous opaque
/// objects won't be overwritten with alpha < 1.0. (this is obviously wrong for a variety of reasons, but it looks good enough)
/// Another problem with this is that during MSAA resolve we now average those too low alpha values.
/// This makes us end up with a premultiplied alpha value that looks like it has additive blending applied since
/// the resulting alpha value is not what was used to determine the color!
/// -> See workaround in `composite.wgsl`
///
/// Ultimately, we have the following options to fix this properly sorted from most desirable to least:
/// * don't use alpha-to-coverage, use instead `SampleMask`
/// * this is not supported on WebGL which either needs a special path, or more likely, has to just disable anti-aliasing in these cases
/// * as long as we use 4x MSAA, we have a pretty good idea where the samples are (see `jumpflooding_init_msaa.wgsl`),
/// so we can actually use this to **improve** the quality of the anti-aliasing a lot by turning on/off the samples that are actually covered.
/// * figure out a way to never needing to blend with the background in [`Self::composite`].
/// * figure out how to use `GL_SAMPLE_ALPHA_TO_ONE` after all. This involves bringing this up with the WebGPU spec team and won't work on WebGL.
pub const MAIN_TARGET_ALPHA_TO_COVERAGE_COLOR_STATE: wgpu::ColorTargetState =
wgpu::ColorTargetState {
format: Self::MAIN_TARGET_COLOR_FORMAT,
blend: Some(wgpu::BlendState {
color: wgpu::BlendComponent::REPLACE,
alpha: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::One,
dst_factor: wgpu::BlendFactor::One,
operation: wgpu::BlendOperation::Add,
},
}),
write_mask: wgpu::ColorWrites::ALL,
};
/// The texture format used for screenshots.
pub const SCREENSHOT_COLOR_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Rgba8Unorm;
/// Depth format used for the main target of the view builder.
///
/// [`wgpu::TextureFormat::Depth24Plus`] would be preferable for performance, see [Nvidia's Vulkan dos and don'ts](https://developer.nvidia.com/blog/vulkan-dos-donts/).
/// However, the problem with being "24Plus" is that we no longer know what format we'll actually get, which is a problem e.g. for vertex shader determined depth offsets.
/// (This is a real concern - for example on Metal we always get a floating point target with this!)
/// [`wgpu::TextureFormat::Depth32Float`] on the other hand is widely supported and has the best possible precision (with reverse infinite z projection which we're already using).
pub const MAIN_TARGET_DEPTH_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth32Float;
/// Enable MSAA always. This makes our pipeline less variable as well, as we need MSAA resolve steps if we want any MSAA at all!
///
/// 4 samples are the only thing `WebGPU` supports, and currently wgpu as well
/// ([tracking issue for more options on native](https://github.com/gfx-rs/wgpu/issues/2910))
pub const MAIN_TARGET_SAMPLE_COUNT: u32 = 4;
/// Default multisample state that any [`wgpu::RenderPipeline`] drawing to the main target needs to use.
///
/// In rare cases, pipelines may want to enable alpha to coverage and/or sample masks.
pub const MAIN_TARGET_DEFAULT_MSAA_STATE: wgpu::MultisampleState = wgpu::MultisampleState {
count: Self::MAIN_TARGET_SAMPLE_COUNT,
mask: !0,
alpha_to_coverage_enabled: false,
};
/// Default value for clearing depth buffer to infinity.
///
/// 0.0 == far since we're using reverse-z.
pub const DEFAULT_DEPTH_CLEAR: wgpu::LoadOp<f32> = wgpu::LoadOp::Clear(0.0);
/// Default depth state for enabled depth write & read.
pub const MAIN_TARGET_DEFAULT_DEPTH_STATE: Option<wgpu::DepthStencilState> =
Some(wgpu::DepthStencilState {
format: Self::MAIN_TARGET_DEPTH_FORMAT,
// It's important to set the depth test to GreaterEqual, not to Greater.
// This way, we ensure that objects that are drawn later with the exact same depth value, can overwrite earlier ones!
depth_compare: wgpu::CompareFunction::GreaterEqual,
depth_write_enabled: true,
stencil: wgpu::StencilState {
front: wgpu::StencilFaceState::IGNORE,
back: wgpu::StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: wgpu::DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
});
pub fn new(ctx: &RenderContext, config: TargetConfiguration) -> Self {
re_tracing::profile_function!();
// Can't handle 0 size resolution since this would imply creating zero sized textures.
assert_ne!(config.resolution_in_pixel[0], 0);
assert_ne!(config.resolution_in_pixel[1], 0);
// TODO(andreas): Should tonemapping preferences go here as well? Likely!
let main_target_desc = TextureDesc {
label: format!("{:?} - main target", config.name).into(),
size: wgpu::Extent3d {
width: config.resolution_in_pixel[0],
height: config.resolution_in_pixel[1],
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count: Self::MAIN_TARGET_SAMPLE_COUNT,
dimension: wgpu::TextureDimension::D2,
format: Self::MAIN_TARGET_COLOR_FORMAT,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
};
let hdr_render_target_msaa = ctx
.gpu_resources
.textures
.alloc(&ctx.device, &main_target_desc);
// Like hdr_render_target, but with MSAA resolved.
let main_target_resolved = ctx.gpu_resources.textures.alloc(
&ctx.device,
&TextureDesc {
label: format!("{:?} - main target resolved", config.name).into(),
sample_count: 1,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT
| wgpu::TextureUsages::TEXTURE_BINDING,
..main_target_desc
},
);
let depth_buffer = ctx.gpu_resources.textures.alloc(
&ctx.device,
&TextureDesc {
label: format!("{:?} - depth buffer", config.name).into(),
format: Self::MAIN_TARGET_DEPTH_FORMAT,
..main_target_desc
},
);
let projection_from_view = config
.projection_from_view
.projection_from_view(config.resolution_in_pixel);
let tan_half_fov = config.projection_from_view.tan_half_fov();
let resolution = glam::Vec2::new(
config.resolution_in_pixel[0] as f32,
config.resolution_in_pixel[1] as f32,
);
let pixel_world_size_from_camera_distance = match config.projection_from_view {
Projection::Perspective { .. } => {
// Determine how wide a pixel is in world space at unit distance from the camera.
//
// derivation:
// tan(FOV / 2) = (screen_in_world / 2) / distance
// screen_in_world = tan(FOV / 2) * distance * 2
//
// want: pixels in world per distance, i.e (screen_in_world / resolution / distance)
// => (resolution / screen_in_world / distance) = tan(FOV / 2) * distance * 2 / resolution / distance =
// = tan(FOV / 2) * 2.0 / resolution
tan_half_fov * 2.0 / resolution
}
Projection::Orthographic {
vertical_world_size,
..
} => {
glam::vec2(
vertical_world_size * resolution.x / resolution.y,
vertical_world_size,
) / resolution
}
};
// Finally, apply a viewport transformation to the projection.
let ndc_scale_and_translation = config
.viewport_transformation
.to_ndc_scale_and_translation();
let projection_from_view = ndc_scale_and_translation * projection_from_view;
// Need to take into account that a smaller or bigger portion of the world scale is visible now.
let pixel_world_size_from_camera_distance =
pixel_world_size_from_camera_distance * config.viewport_transformation.scale();
// Unless the transformation intentionally stretches the image,
// our world size -> pixel size conversation factor should be roughly the same in both directions.
//
// As of writing, the shaders dealing with pixel size estimation, can't deal with non-uniform
// scaling in the viewport transformation.
let pixel_world_size_from_camera_distance = pixel_world_size_from_camera_distance.x;
let mut view_from_world = config.view_from_world.to_mat4();
// For OrthographicCameraMode::TopLeftCorner, we want Z facing forward.
match config.projection_from_view {
Projection::Orthographic { camera_mode, .. } => match camera_mode {
OrthographicCameraMode::TopLeftCornerAndExtendZ => {
*view_from_world.col_mut(2) = -view_from_world.col(2);
}
OrthographicCameraMode::NearPlaneCenter => {}
},
Projection::Perspective { .. } => {}
};
let camera_position = config.view_from_world.inverse().translation();
let camera_forward = -view_from_world.row(2).truncate();
let projection_from_world = projection_from_view * view_from_world;
// Setup frame uniform buffer
let frame_uniform_buffer_content = FrameUniformBuffer {
view_from_world: glam::Affine3A::from_mat4(view_from_world).into(),
projection_from_view: projection_from_view.into(),
projection_from_world: projection_from_world.into(),
camera_position,
camera_forward,
tan_half_fov: tan_half_fov.into(),
pixel_world_size_from_camera_distance,
pixels_per_point: config.pixels_per_point,
device_tier: (ctx.config.device_caps.tier as u32).into(),
};
let frame_uniform_buffer = create_and_fill_uniform_buffer(
ctx,
format!("{:?} - frame uniform buffer", config.name).into(),
frame_uniform_buffer_content,
);
let bind_group_0 = ctx.global_bindings.create_bind_group(
&ctx.gpu_resources,
&ctx.device,
frame_uniform_buffer,
);
let outline_mask_processor = config.outline_config.as_ref().map(|outline_config| {
OutlineMaskProcessor::new(
ctx,
outline_config,
&config.name,
config.resolution_in_pixel,
)
});
let composition_draw = CompositorDrawData::new(
ctx,
&main_target_resolved,
outline_mask_processor
.as_ref()
.map(|p| p.final_voronoi_texture()),
&config.outline_config,
config.blend_with_background,
);
let setup = ViewTargetSetup {
name: config.name,
bind_group_0,
main_target_msaa: hdr_render_target_msaa,
main_target_resolved,
depth_buffer,
resolution_in_pixel: config.resolution_in_pixel,
frame_uniform_buffer_content,
};
Self {
setup,
queued_draws: vec![composition_draw.into()],
outline_mask_processor,
screenshot_processor: Default::default(),
picking_processor: Default::default(),
}
}
/// Resolution in pixels as configured on view builder creation.
pub fn resolution_in_pixel(&self) -> [u32; 2] {
self.setup.resolution_in_pixel
}
fn draw_phase(
&self,
renderers: &Renderers,
render_pipelines: &GpuRenderPipelinePoolAccessor<'_>,
phase: DrawPhase,
pass: &mut wgpu::RenderPass<'_>,
) {
re_tracing::profile_function!();
for queued_draw in &self.queued_draws {
if queued_draw.participated_phases.contains(&phase) {
let res = (queued_draw.draw_func)(
renderers,
render_pipelines,
phase,
pass,
queued_draw.draw_data.as_ref(),
);
if let Err(err) = res {
re_log::error!(renderer=%queued_draw.renderer_name, %err,
"renderer failed to draw");
}
}
}
}
pub fn queue_draw(&mut self, draw_data: impl Into<QueueableDrawData>) -> &mut Self {
self.queued_draws.push(draw_data.into());
self
}
/// Draws the frame as instructed to a temporary HDR target.
pub fn draw(
&self,
ctx: &RenderContext,
clear_color: Rgba,
) -> Result<wgpu::CommandBuffer, PoolError> {
re_tracing::profile_function!();
// Renderers and render pipelines are locked for the entirety of this method:
// This means it's *not* possible to add renderers or pipelines while drawing is in progress!
//
// This is primarily due to the lifetime association render passes have all passed in resources:
// For dynamic resources like bind groups/textures/buffers we use handles that *store* an arc
// to the wgpu resources to solve this ownership problem.
// But for render pipelines, which we want to be able the resource under a handle via reload,
// so we always have to do some kind of lookup prior to or during rendering.
// Therefore, we just lock the pool for the entirety of the draw which ensures
// that the lock outlives the pass.
//
// Renderers can't be added anyways at this point (RendererData add their Renderer on creation),
// so no point in taking the lock repeatedly.
//
// TODO(gfx-rs/wgpu#1453): Note that this is a limitation that will be lifted in future versions of wgpu.
// However, having our locking concentrated for the duration of a view draw
// is also beneficial since it enforces the model of prepare->draw which avoids a lot of repeated
// locking and unlocking.
let renderers = ctx.read_lock_renderers();
let pipelines = ctx.gpu_resources.render_pipelines.resources();
let setup = &self.setup;
let mut encoder = ctx
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: setup.name.clone().get(),
});
{
re_tracing::profile_scope!("main target pass");
let mut pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: DebugLabel::from(format!("{} - main pass", setup.name)).get(),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &setup.main_target_msaa.default_view,
resolve_target: Some(&setup.main_target_resolved.default_view),
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: clear_color.r() as f64,
g: clear_color.g() as f64,
b: clear_color.b() as f64,
a: clear_color.a() as f64,
}),
// Don't care about the result, it's going to be resolved to the resolve target.
// This can have be much better perf, especially on tiler gpus.
store: wgpu::StoreOp::Discard,
},
})],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
view: &setup.depth_buffer.default_view,
depth_ops: Some(wgpu::Operations {
load: Self::DEFAULT_DEPTH_CLEAR,
store: wgpu::StoreOp::Discard,
}),
stencil_ops: None,
}),
timestamp_writes: None,
occlusion_query_set: None,
});
pass.set_bind_group(0, &setup.bind_group_0, &[]);
for phase in [DrawPhase::Opaque, DrawPhase::Background] {
self.draw_phase(&renderers, &pipelines, phase, &mut pass);
}
}
if let Some(picking_processor) = &self.picking_processor {
{
let mut pass = picking_processor.begin_render_pass(&setup.name, &mut encoder);
// PickingProcessor has as custom frame uniform buffer.
//
// TODO(andreas): Formalize this somehow.
// Maybe just every processor should have its own and gets abstract information from the view builder to set it up?
// … or we change this whole thing again so slice things differently:
// 0: Truly view Global: Samplers, time, point conversions, etc.
// 1: Phase global (camera & projection goes here)
// 2: Specific renderer
// 3: Draw call in renderer.
//
//pass.set_bind_group(0, &setup.bind_group_0, &[]);
self.draw_phase(&renderers, &pipelines, DrawPhase::PickingLayer, &mut pass);
}
match picking_processor.end_render_pass(&mut encoder, &pipelines) {
Err(PickingLayerError::ResourcePoolError(err)) => {
return Err(err);
}
Err(PickingLayerError::ReadbackError(err)) => {
re_log::warn_once!("Failed to schedule picking data readback: {err}");
}
Ok(()) => {}
}
}
if let Some(outline_mask_processor) = &self.outline_mask_processor {
re_tracing::profile_scope!("outlines");
{
re_tracing::profile_scope!("outline mask pass");
let mut pass = outline_mask_processor.start_mask_render_pass(&mut encoder);
pass.set_bind_group(0, &setup.bind_group_0, &[]);
self.draw_phase(&renderers, &pipelines, DrawPhase::OutlineMask, &mut pass);
}
outline_mask_processor.compute_outlines(&pipelines, &mut encoder)?;
}
if let Some(screenshot_processor) = &self.screenshot_processor {
{
let mut pass = screenshot_processor.begin_render_pass(&setup.name, &mut encoder);
pass.set_bind_group(0, &setup.bind_group_0, &[]);
self.draw_phase(
&renderers,
&pipelines,
DrawPhase::CompositingScreenshot,
&mut pass,
);
}
match screenshot_processor.end_render_pass(&mut encoder) {
Ok(()) => {}
Err(err) => {
re_log::warn_once!("Failed to schedule screenshot data readback: {err}");
}
}
}
Ok(encoder.finish())
}
/// Schedules the taking of a screenshot.
///
/// Needs to be called before [`ViewBuilder::draw`].
/// Can only be called once per frame per [`ViewBuilder`].
///
/// Data from the screenshot needs to be retrieved via [`crate::ScreenshotProcessor::next_readback_result`].
/// To do so, you need to pass the exact same `identifier` and type of user data as you've done here:
/// ```no_run
/// use re_renderer::{view_builder::ViewBuilder, RenderContext, ScreenshotProcessor};
/// fn take_screenshot(ctx: &RenderContext, view_builder: &mut ViewBuilder) {
/// view_builder.schedule_screenshot(&ctx, 42, "My screenshot".to_owned());
/// }
/// fn receive_screenshots(ctx: &RenderContext) {
/// while ScreenshotProcessor::next_readback_result::<String>(ctx, 42, |data, extent, user_data| {
/// re_log::info!("Received screenshot {}", user_data);
/// },
/// ).is_some()
/// {}
/// }
/// ```
///
/// Received data that isn't retrieved for more than a frame will be automatically discarded.
pub fn schedule_screenshot<T: 'static + Send + Sync>(
&mut self,
ctx: &RenderContext,
identifier: GpuReadbackIdentifier,
user_data: T,
) -> Result<(), ViewBuilderError> {
if self.screenshot_processor.is_some() {
return Err(ViewBuilderError::ScreenshotAlreadyScheduled);
};
self.screenshot_processor = Some(ScreenshotProcessor::new(
ctx,
&self.setup.name,
self.setup.resolution_in_pixel.into(),
identifier,
user_data,
));
Ok(())
}
/// Schedules the readback of a rectangle from the picking layer.
///
/// Needs to be called before [`ViewBuilder::draw`].
/// Can only be called once per frame per [`ViewBuilder`].
///
/// The result will still be valid if the rectangle is partially or fully outside of bounds.
/// Areas that are not overlapping with the primary target will be filled as-if the view's target was bigger,
/// i.e. all values are valid picking IDs, it is up to the user to discard anything that is out of bounds.
///
/// Note that the picking layer will not be created in the first place if this isn't called.
///
/// Data from the picking rect needs to be retrieved via [`crate::PickingLayerProcessor::next_readback_result`].
/// To do so, you need to pass the exact same `identifier` and type of user data as you've done here:
/// ```no_run
/// use re_renderer::{view_builder::ViewBuilder, RectInt, PickingLayerProcessor, RenderContext};
/// fn schedule_picking_readback(
/// ctx: &RenderContext,
/// view_builder: &mut ViewBuilder,
/// picking_rect: RectInt,
/// ) {
/// view_builder.schedule_picking_rect(
/// ctx, picking_rect, 42, "My screenshot".to_owned(), false,
/// );
/// }
/// fn receive_screenshots(ctx: &RenderContext) {
/// while let Some(result) = PickingLayerProcessor::next_readback_result::<String>(ctx, 42) {
/// re_log::info!("Received picking_data {}", result.user_data);
/// }
/// }
/// ```
///
/// Received data that isn't retrieved for more than a frame will be automatically discarded.
pub fn schedule_picking_rect<T: 'static + Send + Sync>(
&mut self,
ctx: &RenderContext,
picking_rect: RectInt,
readback_identifier: GpuReadbackIdentifier,
readback_user_data: T,
show_debug_view: bool,
) -> Result<(), ViewBuilderError> {
if self.picking_processor.is_some() {
return Err(ViewBuilderError::PickingRectAlreadyScheduled);
};
let picking_processor = PickingLayerProcessor::new(
ctx,
&self.setup.name,
self.setup.resolution_in_pixel.into(),
picking_rect,
&self.setup.frame_uniform_buffer_content,
show_debug_view,
readback_identifier,
readback_user_data,
);
if show_debug_view {
self.queue_draw(DebugOverlayDrawData::new(
ctx,
&picking_processor.picking_target,
self.setup.resolution_in_pixel.into(),
picking_rect,
)?);
}
self.picking_processor = Some(picking_processor);
Ok(())
}
/// Composites the final result of a `ViewBuilder` to a given output `RenderPass`.
///
/// The bound surface(s) on the `RenderPass` are expected to be the same format as specified on `Context` creation.
/// `screen_position` specifies where on the output pass the view is placed.
pub fn composite(&self, ctx: &RenderContext, pass: &mut wgpu::RenderPass<'_>) {
re_tracing::profile_function!();
pass.set_bind_group(0, &self.setup.bind_group_0, &[]);
self.draw_phase(
&ctx.read_lock_renderers(),
&ctx.gpu_resources.render_pipelines.resources(),
DrawPhase::Compositing,
pass,
);
}
}