1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
use crate::{PlotPoint, PlotPointAttrs};
/// Implements aggregation behaviors for `Average`.
pub struct AverageAggregator;
impl AverageAggregator {
/// `aggregation_factor`: the width of the aggregation window.
///
/// Adjacent plot points may have the same `PlotPoint::time`,
/// if data was logged multiple times on the same time stamp.
#[inline]
pub fn aggregate(aggregation_factor: f64, points: &[PlotPoint]) -> Vec<PlotPoint> {
let min_time = points.first().map_or(i64::MIN, |p| p.time);
let max_time = points.last().map_or(i64::MAX, |p| p.time);
let mut aggregated =
Vec::with_capacity((points.len() as f64 / aggregation_factor) as usize);
// NOTE: `floor()` since we handle fractional tails separately.
let window_size = usize::max(1, aggregation_factor.floor() as usize);
let aggregation_factor_fract = aggregation_factor.fract();
let mut i = 0;
while i < points.len() {
// How many points to combine together this time.
let mut j = 0;
let mut ratio = 1.0;
let mut acc = points[i + j].clone();
j += 1;
while i + j < points.len() && are_aggregatable(&points[i], &points[i + j], window_size)
{
let point = &points[i + j];
acc.value += point.value;
acc.attrs.radius_ui += point.attrs.radius_ui;
ratio += 1.0;
j += 1;
}
// Do a weighted average for the fractional tail.
if aggregation_factor_fract > 0.0
&& i + j < points.len()
&& are_aggregatable(&points[i], &points[i + j], window_size)
{
let point = &points[i + j];
let w = aggregation_factor_fract;
acc.value += point.value * w;
acc.attrs.radius_ui += (point.attrs.radius_ui as f64 * w) as f32;
ratio += aggregation_factor_fract;
j += 1;
}
acc.value /= ratio;
acc.attrs.radius_ui = (acc.attrs.radius_ui as f64 / ratio) as _;
aggregated.push(acc);
i += j;
}
// Force align the start and end timestamps to prevent jarring visual glitches.
if let Some(p) = aggregated.first_mut() {
p.time = min_time;
}
if let Some(p) = aggregated.last_mut() {
p.time = max_time;
}
aggregated
}
}
/// Implements aggregation behaviors for `Min`, `Max`, `MinMax`, and `MinMaxAverage`.
pub enum MinMaxAggregator {
/// Keep only the maximum values in the range.
Max,
/// Keep only the minimum values in the range.
Min,
/// Keep both the minimum and maximum values in the range.
///
/// This will yield two aggregated points instead of one, effectively creating a vertical line.
MinMax,
/// Find both the minimum and maximum values in the range, then use the average of those.
MinMaxAverage,
}
impl MinMaxAggregator {
/// Adjacent plot points may have the same `PlotPoint::time`,
/// if data was logged multiple times on the same time stamp.
#[inline]
pub fn aggregate(&self, aggregation_window_size: f64, points: &[PlotPoint]) -> Vec<PlotPoint> {
// NOTE: `round()` since this can only handle discrete window sizes.
let window_size = usize::max(1, aggregation_window_size.round() as usize);
let min_time = points.first().map_or(i64::MIN, |p| p.time);
let max_time = points.last().map_or(i64::MAX, |p| p.time);
let capacity = (points.len() as f64 / window_size as f64) as usize;
let mut aggregated = match self {
Self::MinMax => Vec::with_capacity(capacity * 2),
_ => Vec::with_capacity(capacity),
};
let mut i = 0;
while i < points.len() {
// How many points to combine together this time.
let mut j = 0;
let mut acc_min = points[i + j].clone();
let mut acc_max = points[i + j].clone();
j += 1;
while i + j < points.len() && are_aggregatable(&points[i], &points[i + j], window_size)
{
let point = &points[i + j];
match self {
Self::MinMax | Self::MinMaxAverage => {
acc_min.value = f64::min(acc_min.value, point.value);
acc_min.attrs.radius_ui =
f32::min(acc_min.attrs.radius_ui, point.attrs.radius_ui);
acc_max.value = f64::max(acc_max.value, point.value);
acc_max.attrs.radius_ui =
f32::max(acc_max.attrs.radius_ui, point.attrs.radius_ui);
}
Self::Min => {
acc_min.value = f64::min(acc_min.value, point.value);
acc_min.attrs.radius_ui =
f32::min(acc_min.attrs.radius_ui, point.attrs.radius_ui);
}
Self::Max => {
acc_max.value = f64::max(acc_max.value, point.value);
acc_max.attrs.radius_ui =
f32::max(acc_max.attrs.radius_ui, point.attrs.radius_ui);
}
}
j += 1;
}
match self {
Self::MinMax => {
aggregated.push(acc_min);
// Avoid pushing the same point twice.
if j > 1 {
aggregated.push(acc_max);
}
}
Self::MinMaxAverage => {
// Don't average a single point with itself.
if j > 1 {
acc_min.value = (acc_min.value + acc_max.value) * 0.5;
acc_min.attrs.radius_ui =
(acc_min.attrs.radius_ui + acc_max.attrs.radius_ui) * 0.5;
}
aggregated.push(acc_min);
}
Self::Min => {
aggregated.push(acc_min);
}
Self::Max => {
aggregated.push(acc_max);
}
}
i += j;
}
// Force align the start and end timestamps to prevent jarring visual glitches.
if let Some(p) = aggregated.first_mut() {
p.time = min_time;
}
if let Some(p) = aggregated.last_mut() {
p.time = max_time;
}
aggregated
}
}
/// Are two [`PlotPoint`]s safe to aggregate?
fn are_aggregatable(point1: &PlotPoint, point2: &PlotPoint, window_size: usize) -> bool {
let PlotPoint {
time,
value: _,
attrs,
} = point1;
let PlotPointAttrs {
color,
radius_ui: _,
kind,
} = attrs;
// We cannot aggregate two points that don't live in the same aggregation window to start with.
// This is very common with e.g. sparse datasets.
time.abs_diff(point2.time) <= window_size as u64
&& *color == point2.attrs.color
&& *kind == point2.attrs.kind
}