1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
//! Show the data density over time for a data stream.
//!
//! The data density is the number of data points per unit of time.
//! We collect this into a histogram, blur it, and then paint it.

use std::ops::RangeInclusive;
use std::sync::Arc;

use egui::emath::Rangef;
use egui::{epaint::Vertex, lerp, pos2, remap, Color32, NumExt as _, Rect, Shape};

use re_chunk_store::Chunk;
use re_chunk_store::RangeQuery;
use re_log_types::{ComponentPath, ResolvedTimeRange, TimeInt, Timeline};
use re_viewer_context::{Item, TimeControl, UiLayout, ViewerContext};

use crate::recursive_chunks_per_timeline_subscriber::PathRecursiveChunksPerTimelineStoreSubscriber;
use crate::TimePanelItem;

use super::time_ranges_ui::TimeRangesUi;

// ----------------------------------------------------------------------------

/// We need some margin because of the blurring.
const MARGIN_X: f32 = 2.0;

/// Higher = slower, but more accurate.
const DENSITIES_PER_UI_PIXEL: f32 = 1.0;

const DEBUG_PAINT: bool = false;

// ----------------------------------------------------------------------------

/// Persistent data for painting the data density graph.
///
/// Used to dynamically normalize the data density graph based on
/// the output of the previous frame.
#[derive(Default, serde::Deserialize, serde::Serialize)]
pub struct DataDensityGraphPainter {
    /// The maximum density of the previous frame.
    /// This is what we use to normalize the density graphs.
    previous_max_density: f32,

    /// The maximum density we've seen so far this frame.
    next_max_density: f32,
}

impl DataDensityGraphPainter {
    pub fn begin_frame(&mut self, egui_ctx: &egui::Context) {
        if self.next_max_density == 0.0 {
            return;
        }

        let dt = egui_ctx.input(|input| input.stable_dt).at_most(0.1);

        let new = lerp(
            self.previous_max_density..=self.next_max_density,
            egui::emath::exponential_smooth_factor(0.90, 0.1, dt),
        );

        if (self.previous_max_density - new).abs() > 0.01 {
            egui_ctx.request_repaint();
        }

        self.previous_max_density = new;

        // If we set this to zero, then a single data point will look weirdly high,
        // so we set it to a small value instead.
        self.next_max_density = 2.0;
    }

    /// Return something in the 0-1 range.
    pub fn normalize_density(&mut self, density: f32) -> f32 {
        debug_assert!(density >= 0.0);

        self.next_max_density = self.next_max_density.max(density);

        if self.previous_max_density > 0.0 {
            (density / self.previous_max_density).at_most(1.0)
        } else {
            density.at_most(1.0)
        }
    }
}

// ----------------------------------------------------------------------------

pub struct DensityGraph {
    /// Number of datapoints per bucket.
    /// `0 == min_x, n-1 == max_x`.
    buckets: Vec<f32>,
    min_x: f32,
    max_x: f32,
}

impl DensityGraph {
    pub fn new(x_range: Rangef) -> Self {
        let min_x = x_range.min - MARGIN_X;
        let max_x = x_range.max + MARGIN_X;
        let n = ((max_x - min_x) * DENSITIES_PER_UI_PIXEL).ceil() as usize;
        Self {
            buckets: vec![0.0; n],
            min_x,
            max_x,
        }
    }

    /// We return a float so user can interpolate between buckets.
    fn bucket_index_from_x(&self, x: f32) -> f32 {
        remap(
            x,
            self.min_x..=self.max_x,
            0.0..=(self.buckets.len() as f32 - 1.0),
        )
    }

    fn x_from_bucket_index(&self, i: usize) -> f32 {
        remap(
            i as f32,
            0.0..=(self.buckets.len() as f32 - 1.0),
            self.min_x..=self.max_x,
        )
    }

    pub fn add_point(&mut self, x: f32, count: f32) {
        debug_assert!(0.0 <= count);

        let i = self.bucket_index_from_x(x);

        // linearly interpolate where we add the count:
        let fract = i - i.floor();
        debug_assert!(0.0 <= fract && fract <= 1.0);
        let i = i.floor() as i64;

        if let Ok(i) = usize::try_from(i) {
            if let Some(bucket) = self.buckets.get_mut(i) {
                *bucket += (1.0 - fract) * count;
            }
        }
        if let Ok(i) = usize::try_from(i + 1) {
            if let Some(bucket) = self.buckets.get_mut(i) {
                *bucket += fract * count;
            }
        }
    }

    pub fn add_range(&mut self, (min_x, max_x): (f32, f32), count: f32) {
        debug_assert!(min_x <= max_x);

        if max_x < self.min_x || self.max_x < min_x {
            return;
        }

        if min_x == max_x {
            let center_x = lerp(min_x..=max_x, 0.5);
            self.add_point(center_x, count);
            return;
        }

        // box filter:

        let min_bucket = self.bucket_index_from_x(min_x);
        let max_bucket = self.bucket_index_from_x(max_x);

        // example: we want to add to the range [3.7, 5.2].
        // We then want to add to the buckets [3, 4, 5, 6],
        // but not in equal amounts.

        let min_full_bucket = min_bucket.ceil();
        let first_bucket = min_bucket.floor();
        let max_full_bucket = max_bucket.floor();
        let last_bucket = max_bucket.ceil();
        let first_bucket_factor = 1.0 - (min_bucket - first_bucket);
        let num_full_buckets = 1.0 + max_full_bucket - min_full_bucket;
        let last_bucket_factor = 1.0 - (last_bucket - max_bucket);
        let count_per_bucket =
            count / (first_bucket_factor + num_full_buckets + last_bucket_factor);

        // For filling self.buckets, we need to account for min_bucket/max_bucket being out of range!
        // (everything before & beyond can be seen as a "virtual" bucket that we can't fill)

        // first bucket, partially filled:
        if let Ok(i) = usize::try_from(first_bucket as i64) {
            if let Some(bucket) = self.buckets.get_mut(i) {
                *bucket += first_bucket_factor * count_per_bucket;
            }
        }

        // full buckets:
        if min_full_bucket != max_full_bucket {
            let min_full_bucket_idx =
                (min_full_bucket as i64).clamp(0, self.buckets.len() as i64 - 1) as usize;
            let max_full_bucket_idx =
                (max_full_bucket as i64).clamp(0, self.buckets.len() as i64 - 1) as usize;
            for bucket in &mut self.buckets[min_full_bucket_idx..=max_full_bucket_idx] {
                *bucket += count_per_bucket;
            }
        }

        // last bucket, partially filled:
        if let Ok(i) = usize::try_from(last_bucket as i64) {
            if let Some(bucket) = self.buckets.get_mut(i) {
                *bucket += last_bucket_factor * count_per_bucket;
            }
        }
    }

    pub fn paint(
        &self,
        data_density_graph_painter: &mut DataDensityGraphPainter,
        y_range: Rangef,
        painter: &egui::Painter,
        full_color: Color32,
        hovered_x_range: RangeInclusive<f32>,
    ) {
        re_tracing::profile_function!();

        let Rangef {
            min: min_y,
            max: max_y,
        } = y_range;

        let center_y = (min_y + max_y) / 2.0;
        let max_radius = (max_y - min_y) / 2.0;

        // We paint a symmetric plot, with extra feathering for anti-aliasing:
        //
        // bucket: 0  1 2   3
        //
        //         0
        //          \   x---x
        //         1 \ /
        //          \ 4 x---x
        //           \ /
        //            5
        //
        //            6
        //           / \
        //          / 7 x---x
        //         2 / \
        //          /   x---x
        //         3
        //
        // bucket: 0  1 2   3
        //
        // This means we have an inner radius, and an outer radius.
        // We have four vertices per bucket, and six triangles.

        let pixel_size = 1.0 / painter.ctx().pixels_per_point();
        let feather_radius = 0.5 * pixel_size;

        let uv = egui::Pos2::ZERO;

        let mut mesh = egui::Mesh::default();
        mesh.vertices.reserve(4 * self.buckets.len());

        for (i, &density) in self.buckets.iter().enumerate() {
            // TODO(emilk): early-out if density is 0 for long stretches

            let x = self.x_from_bucket_index(i);

            let normalized_density = data_density_graph_painter.normalize_density(density);

            let (inner_radius, inner_color) = if normalized_density == 0.0 {
                (0.0, Color32::TRANSPARENT)
            } else {
                // Make sure we see small things even when they are dwarfed
                // by the max due to the normalization:
                const MIN_RADIUS: f32 = 1.5;
                let inner_radius =
                    (max_radius * normalized_density).at_least(MIN_RADIUS) - feather_radius;

                let inner_color = if hovered_x_range.contains(&x) {
                    Color32::WHITE
                } else {
                    full_color.gamma_multiply(lerp(0.5..=1.0, normalized_density))
                };
                (inner_radius, inner_color)
            };
            let outer_radius = inner_radius + feather_radius;

            mesh.vertices.extend_from_slice(&[
                Vertex {
                    pos: pos2(x, center_y - outer_radius),
                    color: Color32::TRANSPARENT,
                    uv,
                },
                Vertex {
                    pos: pos2(x, center_y - inner_radius),
                    color: inner_color,
                    uv,
                },
                Vertex {
                    pos: pos2(x, center_y + inner_radius),
                    color: inner_color,
                    uv,
                },
                Vertex {
                    pos: pos2(x, center_y + outer_radius),
                    color: Color32::TRANSPARENT,
                    uv,
                },
            ]);
        }

        {
            // I also tried writing this as `flat_map + collect`, but it got much slower in debug builds.
            re_tracing::profile_scope!("triangles");
            mesh.indices.reserve(6 * 3 * (self.buckets.len() - 1));
            for i in 1..self.buckets.len() {
                let i = i as u32;
                let base = 4 * (i - 1);

                // See the numbering in the ASCII art above.
                // Also note that egui/epaint don't care about winding order.
                mesh.indices.extend_from_slice(&[
                    // top:
                    base,
                    base + 1,
                    base + 4,
                    base + 1,
                    base + 4,
                    base + 5,
                    // middle:
                    base + 1,
                    base + 2,
                    base + 5,
                    base + 2,
                    base + 5,
                    base + 6,
                    // bottom:
                    base + 2,
                    base + 3,
                    base + 6,
                    base + 3,
                    base + 6,
                    base + 7,
                ]);
            }
        }

        painter.add(Shape::Mesh(mesh));
    }
}

// ----------------------------------------------------------------------------

/// Blur the input slightly.
fn smooth(density: &[f32]) -> Vec<f32> {
    re_tracing::profile_function!();

    fn kernel(x: f32) -> f32 {
        (0.25 * std::f32::consts::TAU * x).cos()
    }

    let mut kernel = [
        kernel(-2.0 / 3.0),
        kernel(-1.0 / 3.0),
        kernel(0.0 / 3.0),
        kernel(1.0 / 3.0),
        kernel(2.0 / 3.0),
    ];
    let kernel_sum = kernel.iter().sum::<f32>();
    for k in &mut kernel {
        *k /= kernel_sum;
        debug_assert!(k.is_finite() && 0.0 < *k);
    }

    (0..density.len())
        .map(|i| {
            let mut sum = 0.0;
            for (j, &k) in kernel.iter().enumerate() {
                if let Some(&density) = density.get((i + j).saturating_sub(2)) {
                    debug_assert!(density >= 0.0);
                    sum += k * density;
                }
            }
            debug_assert!(sum.is_finite() && 0.0 <= sum);
            sum
        })
        .collect()
}

// ----------------------------------------------------------------------------

#[allow(clippy::too_many_arguments)]
pub fn data_density_graph_ui(
    data_density_graph_painter: &mut DataDensityGraphPainter,
    ctx: &ViewerContext<'_>,
    time_ctrl: &TimeControl,
    db: &re_entity_db::EntityDb,
    time_area_painter: &egui::Painter,
    ui: &egui::Ui,
    time_ranges_ui: &TimeRangesUi,
    row_rect: Rect,
    item: &TimePanelItem,
    tooltips_enabled: bool,
) {
    re_tracing::profile_function!();

    let timeline = *time_ctrl.timeline();

    let mut data = build_density_graph(
        ui,
        time_ranges_ui,
        row_rect,
        db,
        item,
        timeline,
        DensityGraphBuilderConfig::default(),
    );

    data.density_graph.buckets = smooth(&data.density_graph.buckets);

    data.density_graph.paint(
        data_density_graph_painter,
        row_rect.y_range(),
        time_area_painter,
        graph_color(ctx, &item.to_item(), ui),
        // TODO(jprochazk): completely remove `hovered_x_range` and associated code from painter
        0f32..=0f32,
    );

    if tooltips_enabled {
        if let Some(hovered_time) = data.hovered_time {
            ctx.selection_state().set_hovered(item.to_item());

            if ui.ctx().dragged_id().is_none() {
                // TODO(jprochazk): check chunk.num_rows() and chunk.timeline.is_sorted()
                //                  if too many rows and unsorted, show some generic error tooltip (=too much data)
                egui::show_tooltip_at_pointer(
                    ui.ctx(),
                    ui.layer_id(),
                    egui::Id::new("data_tooltip"),
                    |ui| {
                        show_row_ids_tooltip(ctx, ui, time_ctrl, db, item, hovered_time);
                    },
                );
            }
        }
    }
}

pub fn build_density_graph<'a>(
    ui: &'a egui::Ui,
    time_ranges_ui: &'a TimeRangesUi,
    row_rect: Rect,
    db: &re_entity_db::EntityDb,
    item: &TimePanelItem,
    timeline: Timeline,
    config: DensityGraphBuilderConfig,
) -> DensityGraphBuilder<'a> {
    re_tracing::profile_function!();

    let mut data = DensityGraphBuilder::new(ui, time_ranges_ui, row_rect);

    // Collect all relevant chunks in the visible time range.
    // We do this as a separate step so that we can also deduplicate chunks.
    let visible_time_range = time_ranges_ui
        .time_range_from_x_range((row_rect.left() - MARGIN_X)..=(row_rect.right() + MARGIN_X));

    // NOTE: These chunks are guaranteed to have data on the current timeline
    let (chunk_ranges, total_events): (Vec<(Arc<Chunk>, ResolvedTimeRange, u64)>, u64) = {
        re_tracing::profile_scope!("collect chunks");

        let engine = db.storage_engine();
        let store = engine.store();
        let query = RangeQuery::new(timeline, visible_time_range);

        if let Some(component_name) = item.component_name {
            let mut total_num_events = 0;
            (
                store
                    .range_relevant_chunks(&query, &item.entity_path, component_name)
                    .into_iter()
                    .filter_map(|chunk| {
                        let time_range = chunk.timelines().get(&timeline)?.time_range();
                        chunk
                            .num_events_for_component(component_name)
                            .map(|num_events| {
                                total_num_events += num_events;
                                (chunk, time_range, num_events)
                            })
                    })
                    .collect(),
                total_num_events,
            )
        } else {
            PathRecursiveChunksPerTimelineStoreSubscriber::access(
                &store.id(),
                |chunks_per_timeline| {
                    let Some(info) = chunks_per_timeline
                        .path_recursive_chunks_for_entity_and_timeline(
                            &item.entity_path,
                            &timeline,
                        )
                    else {
                        return Default::default();
                    };

                    (
                        info.recursive_chunks_info
                            .values()
                            .map(|info| {
                                (
                                    info.chunk.clone(),
                                    info.resolved_time_range,
                                    info.num_events,
                                )
                            })
                            .collect(),
                        info.total_num_events,
                    )
                },
            )
            .unwrap_or_default()
        }
    };

    // Small chunk heuristics:
    // We want to render chunks as individual events, but it may be prohibitively expensive
    // for larger chunks, or if the visible time range contains many chunks.
    //
    // We split a large chunk if:
    // 1. The total number of events is less than some threshold
    // 2. The number of events in the chunks is less than N, where:
    //    N is relatively large for sorted chunks
    //    N is much smaller for unsorted chunks

    {
        re_tracing::profile_scope!("add_data");

        let can_render_individual_events = total_events < config.max_total_chunk_events;

        if DEBUG_PAINT {
            ui.ctx().debug_painter().debug_rect(
                row_rect,
                egui::Color32::LIGHT_BLUE,
                format!(
                    "{} chunks, {total_events} events, render individual: {can_render_individual_events}",
                    chunk_ranges.len()
                ),
            );
        }

        for (chunk, time_range, num_events_in_chunk) in chunk_ranges {
            let should_render_individual_events = can_render_individual_events
                && if chunk.is_timeline_sorted(&timeline) {
                    num_events_in_chunk < config.max_events_in_sorted_chunk
                } else {
                    num_events_in_chunk < config.max_events_in_unsorted_chunk
                };

            if should_render_individual_events {
                for (time, num_events) in chunk.num_events_cumulative_per_unique_time(&timeline) {
                    data.add_chunk_point(time, num_events as usize);
                }
            } else {
                data.add_chunk_range(time_range, num_events_in_chunk);
            }
        }
    }

    data
}

#[derive(Clone, Copy)]
pub struct DensityGraphBuilderConfig {
    /// If there are more chunks than this then we NEVER show individual events of any chunk.
    pub max_total_chunk_events: u64,

    /// If a sorted chunk has fewer events than this we show its individual events.
    pub max_events_in_sorted_chunk: u64,

    /// If an unsorted chunk has fewer events than this we show its individual events.
    pub max_events_in_unsorted_chunk: u64,
}

impl DensityGraphBuilderConfig {
    /// All chunks will be rendered whole.
    pub const NEVER_SHOW_INDIVIDUAL_EVENTS: Self = Self {
        max_total_chunk_events: 0,
        max_events_in_unsorted_chunk: 0,
        max_events_in_sorted_chunk: 0,
    };

    /// All sorted chunks will be rendered as individual events,
    /// and all unsorted chunks will be rendered whole.
    pub const ALWAYS_SPLIT_SORTED_CHUNKS: Self = Self {
        max_total_chunk_events: u64::MAX,
        max_events_in_unsorted_chunk: 0,
        max_events_in_sorted_chunk: u64::MAX,
    };

    /// All chunks will be rendered as individual events.
    pub const ALWAYS_SPLIT_ALL_CHUNKS: Self = Self {
        max_total_chunk_events: u64::MAX,
        max_events_in_unsorted_chunk: u64::MAX,
        max_events_in_sorted_chunk: u64::MAX,
    };
}

impl Default for DensityGraphBuilderConfig {
    fn default() -> Self {
        Self {
            // This is an arbitrary threshold meant to ensure that building a data density graph never takes too long.
            //
            // Our very basic benchmarks suggest that at 100k sorted events the graph building takes on average 1.5ms,
            // measured on a high-end x86_64 CPU from 2022 (Ryzen 9 7950x).
            // It does not seem to matter how many chunks there are, only how many total events we're showing.
            //
            // We want to stay around 1ms if possible, preferring to instead spend our frame budget on actually
            // visualizing the data, and we also want to support multiple data density graphs on the screen at once.
            max_total_chunk_events: 10_000,

            // For individual chunks, the limits are completely arbitrary, and help preserve visual clarity of the data
            // when there are too many events in a given chunk.
            max_events_in_sorted_chunk: 10_000,

            // Processing unsorted events is about 20% slower than sorted events.
            max_events_in_unsorted_chunk: 8_000,
        }
    }
}

fn show_row_ids_tooltip(
    ctx: &ViewerContext<'_>,
    ui: &mut egui::Ui,
    time_ctrl: &TimeControl,
    db: &re_entity_db::EntityDb,
    item: &TimePanelItem,
    at_time: TimeInt,
) {
    use re_data_ui::DataUi as _;

    let ui_layout = UiLayout::Tooltip;
    let query = re_chunk_store::LatestAtQuery::new(*time_ctrl.timeline(), at_time);

    let TimePanelItem {
        entity_path,
        component_name,
    } = item;

    if let Some(component_name) = component_name {
        ComponentPath::new(entity_path.clone(), *component_name)
            .data_ui(ctx, ui, ui_layout, &query, db);
    } else {
        re_entity_db::InstancePath::entity_all(entity_path.clone())
            .data_ui(ctx, ui, ui_layout, &query, db);
    }
}

pub struct DensityGraphBuilder<'a> {
    time_ranges_ui: &'a TimeRangesUi,
    row_rect: Rect,

    pointer_pos: Option<egui::Pos2>,
    interact_radius: f32,

    pub density_graph: DensityGraph,
    pub hovered_time: Option<TimeInt>,
}

impl<'a> DensityGraphBuilder<'a> {
    fn new(ui: &'a egui::Ui, time_ranges_ui: &'a TimeRangesUi, row_rect: Rect) -> Self {
        let pointer_pos = ui.input(|i| i.pointer.hover_pos());
        let interact_radius = ui.style().interaction.resize_grab_radius_side;

        Self {
            time_ranges_ui,
            row_rect,

            pointer_pos,
            interact_radius,

            density_graph: DensityGraph::new(row_rect.x_range()),
            hovered_time: None,
        }
    }

    fn add_chunk_point(&mut self, time: TimeInt, num_events: usize) {
        let Some(x) = self.time_ranges_ui.x_from_time_f32(time.into()) else {
            return;
        };

        self.density_graph.add_point(x, num_events as _);

        if let Some(pointer_pos) = self.pointer_pos {
            let is_hovered = {
                // Are we close enough to the point?
                let distance_sq = pos2(x, self.row_rect.center().y).distance_sq(pointer_pos);

                distance_sq < self.interact_radius.powi(2)
            };

            if is_hovered {
                self.hovered_time = Some(time);
            }
        }
    }

    fn add_chunk_range(&mut self, time_range: ResolvedTimeRange, num_events: u64) {
        if num_events == 0 {
            return;
        }

        let (Some(min_x), Some(max_x)) = (
            self.time_ranges_ui.x_from_time_f32(time_range.min().into()),
            self.time_ranges_ui.x_from_time_f32(time_range.max().into()),
        ) else {
            return;
        };

        self.density_graph
            .add_range((min_x, max_x), num_events as _);

        if let Some(pointer_pos) = self.pointer_pos {
            let is_hovered = if (max_x - min_x).abs() < 1.0 {
                // Are we close enough to center?
                let center_x = (max_x + min_x) / 2.0;
                let distance_sq = pos2(center_x, self.row_rect.center().y).distance_sq(pointer_pos);

                distance_sq < self.interact_radius.powi(2)
            } else {
                // Are we within time range rect?
                let time_range_rect = Rect {
                    min: egui::pos2(min_x, self.row_rect.min.y),
                    max: egui::pos2(max_x, self.row_rect.max.y),
                };

                time_range_rect.contains(pointer_pos)
            };

            if is_hovered {
                if let Some(at_time) = self.time_ranges_ui.time_from_x_f32(pointer_pos.x) {
                    self.hovered_time = Some(at_time.round());
                }
            }
        }
    }
}

fn graph_color(ctx: &ViewerContext<'_>, item: &Item, ui: &egui::Ui) -> Color32 {
    let is_selected = ctx.selection().contains_item(item);
    if is_selected {
        make_brighter(ui.visuals().widgets.active.fg_stroke.color)
    } else {
        //TODO(ab): tokenize that!
        Color32::from_gray(225)
    }
}

fn make_brighter(color: Color32) -> Color32 {
    let [r, g, b, _] = color.to_array();
    egui::Color32::from_rgb(
        r.saturating_add(64),
        g.saturating_add(64),
        b.saturating_add(64),
    )
}