1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
//! TUID: Time-based Unique Identifiers.
//!
//! Time-ordered unique 128-bit identifiers.
//!
//! ## Feature flags
#![doc = document_features::document_features!()]
//!
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct Tuid {
/// Approximate nanoseconds since epoch.
time_ns: u64,
/// Initialized to something random on each thread,
/// then incremented for each new [`Tuid`] being allocated.
inc: u64,
}
impl Tuid {
/// Returns the total size of `self` on the heap, in bytes.
///
/// NOTE: This crate cannot depend on `re_types_core`, therefore the actual implementation of
/// `SizeBytes for Tuid` lives in `re_types_core` and calls this method.
#[inline]
pub fn heap_size_bytes(&self) -> u64 {
let Self { time_ns: _, inc: _ } = self;
0
}
}
impl std::fmt::Display for Tuid {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:032X}", self.as_u128())
}
}
impl std::fmt::Debug for Tuid {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:032X}", self.as_u128())
}
}
impl<'a> From<Tuid> for std::borrow::Cow<'a, Tuid> {
#[inline]
fn from(value: Tuid) -> Self {
std::borrow::Cow::Owned(value)
}
}
impl<'a> From<&'a Tuid> for std::borrow::Cow<'a, Tuid> {
#[inline]
fn from(value: &'a Tuid) -> Self {
std::borrow::Cow::Borrowed(value)
}
}
impl Tuid {
/// All zeroes.
pub const ZERO: Self = Self { time_ns: 0, inc: 0 };
/// All ones.
pub const MAX: Self = Self {
time_ns: u64::MAX,
inc: u64::MAX,
};
/// Create a new unique [`Tuid`] based on the current time.
#[allow(clippy::new_without_default)]
#[inline]
pub fn new() -> Self {
use std::cell::RefCell;
thread_local! {
pub static LATEST_TUID: RefCell<Tuid> = RefCell::new(Tuid{
time_ns: monotonic_nanos_since_epoch(),
// Leave top bit at zero so we have plenty of room to grow.
inc: random_u64() & !(1_u64 << 63),
});
}
LATEST_TUID.with(|latest_tuid| {
let mut latest = latest_tuid.borrow_mut();
let new = Self {
time_ns: monotonic_nanos_since_epoch(),
inc: latest.inc + 1,
};
debug_assert!(
latest.time_ns <= new.time_ns,
"Time should be monotonically increasing"
);
*latest = new;
new
})
}
/// Construct a [`Tuid`] from the upper and lower halves of a u128-bit.
/// The first should be nano-seconds since epoch.
#[inline]
pub fn from_nanos_and_inc(time_ns: u64, inc: u64) -> Self {
Self { time_ns, inc }
}
#[inline]
pub fn from_u128(id: u128) -> Self {
Self {
time_ns: (id >> 64) as u64,
inc: (id & (!0 >> 64)) as u64,
}
}
#[inline]
pub fn as_u128(&self) -> u128 {
((self.time_ns as u128) << 64) | (self.inc as u128)
}
/// Approximate nanoseconds since unix epoch.
///
/// The upper 64 bits of the [`Tuid`].
#[inline]
pub fn nanoseconds_since_epoch(&self) -> u64 {
self.time_ns
}
/// The increment part of the [`Tuid`].
///
/// The lower 64 bits of the [`Tuid`].
#[inline]
pub fn inc(&self) -> u64 {
self.inc
}
/// Returns the next logical [`Tuid`].
///
/// Wraps the monotonically increasing back to zero on overflow.
///
/// Beware: wrong usage can easily lead to conflicts.
/// Prefer [`Tuid::new`] when unsure.
#[must_use]
#[inline]
pub fn next(&self) -> Self {
let Self { time_ns, inc } = *self;
Self {
time_ns,
inc: inc.wrapping_add(1),
}
}
/// Returns the `n`-next logical [`Tuid`].
///
/// This is equivalent to calling [`Tuid::next`] `n` times.
/// Wraps the monotonically increasing back to zero on overflow.
///
/// Beware: wrong usage can easily lead to conflicts.
/// Prefer [`Tuid::new`] when unsure.
#[must_use]
#[inline]
pub fn incremented_by(&self, n: u64) -> Self {
let Self { time_ns, inc } = *self;
Self {
time_ns,
inc: inc.wrapping_add(n),
}
}
/// A shortened string representation of the `Tuid`.
#[inline]
pub fn short_string(&self) -> String {
// We still want this to look like a part of the full TUID (i.e. what is printed on
// `std::fmt::Display`).
// Per Thread randomness plus increment is in the last part, so show only that.
// (the first half is time in nanoseconds which for the _most part_ doesn't change that
// often)
let str = self.to_string();
str[(str.len() - 8)..].to_string()
}
}
/// Returns a high-precision, monotonically increasing count that approximates nanoseconds since unix epoch.
#[inline]
fn monotonic_nanos_since_epoch() -> u64 {
// This can maybe be optimized
use once_cell::sync::Lazy;
use web_time::Instant;
static START_TIME: Lazy<(u64, Instant)> = Lazy::new(|| (nanos_since_epoch(), Instant::now()));
START_TIME.0 + START_TIME.1.elapsed().as_nanos() as u64
}
fn nanos_since_epoch() -> u64 {
if let Ok(duration_since_epoch) = web_time::SystemTime::UNIX_EPOCH.elapsed() {
let mut nanos_since_epoch = duration_since_epoch.as_nanos() as u64;
if cfg!(target_arch = "wasm32") {
// Web notriously round to the nearest millisecond (because of spectre/meltdown)
// so we add a bit of extra randomenss here to increase our entropy and reduce the chance of collisions:
nanos_since_epoch += random_u64() % 1_000_000;
}
nanos_since_epoch
} else {
// system time is set before 1970. this should be quite rare.
0
}
}
#[inline]
fn random_u64() -> u64 {
let mut bytes = [0_u8; 8];
getrandom::getrandom(&mut bytes).expect("Couldn't get random bytes");
u64::from_le_bytes(bytes)
}
#[test]
fn test_tuid() {
use std::collections::{BTreeSet, HashSet};
fn is_sorted<T>(data: &[T]) -> bool
where
T: Ord,
{
data.windows(2).all(|w| w[0] <= w[1])
}
let num = 100_000;
let ids: Vec<Tuid> = (0..num).map(|_| Tuid::new()).collect();
assert!(is_sorted(&ids));
assert_eq!(ids.iter().copied().collect::<HashSet::<Tuid>>().len(), num);
assert_eq!(ids.iter().copied().collect::<BTreeSet::<Tuid>>().len(), num);
for id in ids {
assert_eq!(id, Tuid::from_u128(id.as_u128()));
}
}