1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
//! TUID: Time-based Unique Identifiers.
//!
//! Time-ordered unique 128-bit identifiers.
//!
//! ## Feature flags
#![doc = document_features::document_features!()]
//!

mod protobuf_conversions;

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct Tuid {
    /// Approximate nanoseconds since epoch.
    time_ns: u64,

    /// Initialized to something random on each thread,
    /// then incremented for each new [`Tuid`] being allocated.
    inc: u64,
}

impl Tuid {
    /// We give an actual name to [`Tuid`], and inject that name into the Arrow datatype extensions,
    /// as a hack so that we can compactly format them when printing Arrow data to the terminal.
    /// Check out `re_format_arrow` for context.
    pub const NAME: &'static str = "rerun.datatypes.TUID";

    /// Returns the total size of `self` on the heap, in bytes.
    ///
    /// NOTE: This crate cannot depend on `re_types_core`, therefore the actual implementation of
    /// `SizeBytes for Tuid` lives in `re_types_core` and calls this method.
    #[inline]
    pub fn heap_size_bytes(&self) -> u64 {
        let Self { time_ns: _, inc: _ } = self;
        0
    }
}

impl std::fmt::Display for Tuid {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{:032X}", self.as_u128())
    }
}

impl std::fmt::Debug for Tuid {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{:032X}", self.as_u128())
    }
}

impl From<Tuid> for std::borrow::Cow<'_, Tuid> {
    #[inline]
    fn from(value: Tuid) -> Self {
        std::borrow::Cow::Owned(value)
    }
}

impl<'a> From<&'a Tuid> for std::borrow::Cow<'a, Tuid> {
    #[inline]
    fn from(value: &'a Tuid) -> Self {
        std::borrow::Cow::Borrowed(value)
    }
}

impl Tuid {
    /// All zeroes.
    pub const ZERO: Self = Self { time_ns: 0, inc: 0 };

    /// All ones.
    pub const MAX: Self = Self {
        time_ns: u64::MAX,
        inc: u64::MAX,
    };

    /// Create a new unique [`Tuid`] based on the current time.
    #[allow(clippy::new_without_default)]
    #[inline]
    pub fn new() -> Self {
        use std::cell::RefCell;

        thread_local! {
            pub static LATEST_TUID: RefCell<Tuid> = RefCell::new(Tuid{
                time_ns: monotonic_nanos_since_epoch(),

                // Leave top bit at zero so we have plenty of room to grow.
                inc: random_u64() & !(1_u64 << 63),
            });
        }

        LATEST_TUID.with(|latest_tuid| {
            let mut latest = latest_tuid.borrow_mut();

            let new = Self {
                time_ns: monotonic_nanos_since_epoch(),
                inc: latest.inc + 1,
            };

            debug_assert!(
                latest.time_ns <= new.time_ns,
                "Time should be monotonically increasing"
            );

            *latest = new;

            new
        })
    }

    /// Construct a [`Tuid`] from the upper and lower halves of a u128-bit.
    /// The first should be nano-seconds since epoch.
    #[inline]
    pub fn from_nanos_and_inc(time_ns: u64, inc: u64) -> Self {
        Self { time_ns, inc }
    }

    #[inline]
    pub fn from_u128(id: u128) -> Self {
        Self {
            time_ns: (id >> 64) as u64,
            inc: (id & (!0 >> 64)) as u64,
        }
    }

    #[inline]
    pub fn as_u128(&self) -> u128 {
        ((self.time_ns as u128) << 64) | (self.inc as u128)
    }

    /// Approximate nanoseconds since unix epoch.
    ///
    /// The upper 64 bits of the [`Tuid`].
    #[inline]
    pub fn nanoseconds_since_epoch(&self) -> u64 {
        self.time_ns
    }

    /// The increment part of the [`Tuid`].
    ///
    /// The lower 64 bits of the [`Tuid`].
    #[inline]
    pub fn inc(&self) -> u64 {
        self.inc
    }

    /// Returns the next logical [`Tuid`].
    ///
    /// Wraps the monotonically increasing back to zero on overflow.
    ///
    /// Beware: wrong usage can easily lead to conflicts.
    /// Prefer [`Tuid::new`] when unsure.
    #[must_use]
    #[inline]
    pub fn next(&self) -> Self {
        let Self { time_ns, inc } = *self;

        Self {
            time_ns,
            inc: inc.wrapping_add(1),
        }
    }

    /// Returns the `n`-next logical [`Tuid`].
    ///
    /// This is equivalent to calling [`Tuid::next`] `n` times.
    /// Wraps the monotonically increasing back to zero on overflow.
    ///
    /// Beware: wrong usage can easily lead to conflicts.
    /// Prefer [`Tuid::new`] when unsure.
    #[must_use]
    #[inline]
    pub fn incremented_by(&self, n: u64) -> Self {
        let Self { time_ns, inc } = *self;
        Self {
            time_ns,
            inc: inc.wrapping_add(n),
        }
    }

    /// A shortened string representation of the `Tuid`.
    #[inline]
    pub fn short_string(&self) -> String {
        // We still want this to look like a part of the full TUID (i.e. what is printed on
        // `std::fmt::Display`).
        // Per Thread randomness plus increment is in the last part, so show only that.
        // (the first half is time in nanoseconds which for the _most part_ doesn't change that
        // often)
        let str = self.to_string();
        str[(str.len() - 8)..].to_string()
    }
}

/// Returns a high-precision, monotonically increasing count that approximates nanoseconds since unix epoch.
#[inline]
fn monotonic_nanos_since_epoch() -> u64 {
    // This can maybe be optimized
    use once_cell::sync::Lazy;
    use web_time::Instant;

    static START_TIME: Lazy<(u64, Instant)> = Lazy::new(|| (nanos_since_epoch(), Instant::now()));
    START_TIME.0 + START_TIME.1.elapsed().as_nanos() as u64
}

fn nanos_since_epoch() -> u64 {
    if let Ok(duration_since_epoch) = web_time::SystemTime::UNIX_EPOCH.elapsed() {
        let mut nanos_since_epoch = duration_since_epoch.as_nanos() as u64;

        if cfg!(target_arch = "wasm32") {
            // Web notriously round to the nearest millisecond (because of spectre/meltdown)
            // so we add a bit of extra randomenss here to increase our entropy and reduce the chance of collisions:
            nanos_since_epoch += random_u64() % 1_000_000;
        }

        nanos_since_epoch
    } else {
        // system time is set before 1970. this should be quite rare.
        0
    }
}

#[inline]
fn random_u64() -> u64 {
    let mut bytes = [0_u8; 8];
    getrandom::getrandom(&mut bytes).expect("Couldn't get random bytes");
    u64::from_le_bytes(bytes)
}

#[test]
fn test_tuid() {
    use std::collections::{BTreeSet, HashSet};

    fn is_sorted<T>(data: &[T]) -> bool
    where
        T: Ord,
    {
        data.windows(2).all(|w| w[0] <= w[1])
    }

    let num = 100_000;
    let ids: Vec<Tuid> = (0..num).map(|_| Tuid::new()).collect();
    assert!(is_sorted(&ids));
    assert_eq!(ids.iter().copied().collect::<HashSet::<Tuid>>().len(), num);
    assert_eq!(ids.iter().copied().collect::<BTreeSet::<Tuid>>().len(), num);

    for id in ids {
        assert_eq!(id, Tuid::from_u128(id.as_u128()));
    }
}