1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
// DO NOT EDIT! This file was auto-generated by crates/build/re_types_builder/src/codegen/rust/api.rs
// Based on "crates/store/re_types/definitions/rerun/archetypes/scalar.fbs".
#![allow(unused_imports)]
#![allow(unused_parens)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::cloned_instead_of_copied)]
#![allow(clippy::map_flatten)]
#![allow(clippy::needless_question_mark)]
#![allow(clippy::new_without_default)]
#![allow(clippy::redundant_closure)]
#![allow(clippy::too_many_arguments)]
#![allow(clippy::too_many_lines)]
use ::re_types_core::try_serialize_field;
use ::re_types_core::SerializationResult;
use ::re_types_core::{ComponentBatch, SerializedComponentBatch};
use ::re_types_core::{ComponentDescriptor, ComponentName};
use ::re_types_core::{DeserializationError, DeserializationResult};
/// **Archetype**: A double-precision scalar, e.g. for use for time-series plots.
///
/// The current timeline value will be used for the time/X-axis, hence scalars
/// cannot be static.
///
/// When used to produce a plot, this archetype is used to provide the data that
/// is referenced by [`archetypes::SeriesLine`][crate::archetypes::SeriesLine] or [`archetypes::SeriesPoint`][crate::archetypes::SeriesPoint]. You can do
/// this by logging both archetypes to the same path, or alternatively configuring
/// the plot-specific archetypes through the blueprint.
///
/// ## Examples
///
/// ### Update a scalar over time
/// ```ignore
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let rec = rerun::RecordingStreamBuilder::new("rerun_example_scalar_row_updates").spawn()?;
///
/// for step in 0..64 {
/// rec.set_time_sequence("step", step);
/// rec.log("scalars", &rerun::Scalar::new((step as f64 / 10.0).sin()))?;
/// }
///
/// Ok(())
/// }
/// ```
/// <center>
/// <picture>
/// <source media="(max-width: 480px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/480w.png">
/// <source media="(max-width: 768px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/768w.png">
/// <source media="(max-width: 1024px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/1024w.png">
/// <source media="(max-width: 1200px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/1200w.png">
/// <img src="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/full.png" width="640">
/// </picture>
/// </center>
///
/// ### Update a scalar over time, in a single operation
/// ```ignore
/// use rerun::TimeColumn;
///
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let rec = rerun::RecordingStreamBuilder::new("rerun_example_scalar_column_updates").spawn()?;
///
/// let times = TimeColumn::new_sequence("step", 0..64);
/// let scalars = (0..64).map(|step| (step as f64 / 10.0).sin());
///
/// rec.send_columns(
/// "scalars",
/// [times],
/// rerun::Scalar::update_fields()
/// .with_many_scalar(scalars)
/// .columns_of_unit_batches()?,
/// )?;
///
/// Ok(())
/// }
/// ```
/// <center>
/// <picture>
/// <source media="(max-width: 480px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/480w.png">
/// <source media="(max-width: 768px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/768w.png">
/// <source media="(max-width: 1024px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/1024w.png">
/// <source media="(max-width: 1200px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/1200w.png">
/// <img src="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/full.png" width="640">
/// </picture>
/// </center>
#[derive(Clone, Debug, PartialEq, Default)]
pub struct Scalar {
/// The scalar value to log.
pub scalar: Option<SerializedComponentBatch>,
}
impl Scalar {
/// Returns the [`ComponentDescriptor`] for [`Self::scalar`].
#[inline]
pub fn descriptor_scalar() -> ComponentDescriptor {
ComponentDescriptor {
archetype_name: Some("rerun.archetypes.Scalar".into()),
component_name: "rerun.components.Scalar".into(),
archetype_field_name: Some("scalar".into()),
}
}
/// Returns the [`ComponentDescriptor`] for the associated indicator component.
#[inline]
pub fn descriptor_indicator() -> ComponentDescriptor {
ComponentDescriptor {
archetype_name: Some("rerun.archetypes.Scalar".into()),
component_name: "rerun.components.ScalarIndicator".into(),
archetype_field_name: None,
}
}
}
static REQUIRED_COMPONENTS: once_cell::sync::Lazy<[ComponentDescriptor; 1usize]> =
once_cell::sync::Lazy::new(|| [Scalar::descriptor_scalar()]);
static RECOMMENDED_COMPONENTS: once_cell::sync::Lazy<[ComponentDescriptor; 1usize]> =
once_cell::sync::Lazy::new(|| [Scalar::descriptor_indicator()]);
static OPTIONAL_COMPONENTS: once_cell::sync::Lazy<[ComponentDescriptor; 0usize]> =
once_cell::sync::Lazy::new(|| []);
static ALL_COMPONENTS: once_cell::sync::Lazy<[ComponentDescriptor; 2usize]> =
once_cell::sync::Lazy::new(|| [Scalar::descriptor_scalar(), Scalar::descriptor_indicator()]);
impl Scalar {
/// The total number of components in the archetype: 1 required, 1 recommended, 0 optional
pub const NUM_COMPONENTS: usize = 2usize;
}
/// Indicator component for the [`Scalar`] [`::re_types_core::Archetype`]
pub type ScalarIndicator = ::re_types_core::GenericIndicatorComponent<Scalar>;
impl ::re_types_core::Archetype for Scalar {
type Indicator = ScalarIndicator;
#[inline]
fn name() -> ::re_types_core::ArchetypeName {
"rerun.archetypes.Scalar".into()
}
#[inline]
fn display_name() -> &'static str {
"Scalar"
}
#[inline]
fn indicator() -> SerializedComponentBatch {
#[allow(clippy::unwrap_used)]
ScalarIndicator::DEFAULT.serialized().unwrap()
}
#[inline]
fn required_components() -> ::std::borrow::Cow<'static, [ComponentDescriptor]> {
REQUIRED_COMPONENTS.as_slice().into()
}
#[inline]
fn recommended_components() -> ::std::borrow::Cow<'static, [ComponentDescriptor]> {
RECOMMENDED_COMPONENTS.as_slice().into()
}
#[inline]
fn optional_components() -> ::std::borrow::Cow<'static, [ComponentDescriptor]> {
OPTIONAL_COMPONENTS.as_slice().into()
}
#[inline]
fn all_components() -> ::std::borrow::Cow<'static, [ComponentDescriptor]> {
ALL_COMPONENTS.as_slice().into()
}
#[inline]
fn from_arrow_components(
arrow_data: impl IntoIterator<Item = (ComponentDescriptor, arrow::array::ArrayRef)>,
) -> DeserializationResult<Self> {
re_tracing::profile_function!();
use ::re_types_core::{Loggable as _, ResultExt as _};
let arrays_by_descr: ::nohash_hasher::IntMap<_, _> = arrow_data.into_iter().collect();
let scalar = arrays_by_descr
.get(&Self::descriptor_scalar())
.map(|array| SerializedComponentBatch::new(array.clone(), Self::descriptor_scalar()));
Ok(Self { scalar })
}
}
impl ::re_types_core::AsComponents for Scalar {
#[inline]
fn as_serialized_batches(&self) -> Vec<SerializedComponentBatch> {
use ::re_types_core::Archetype as _;
[Some(Self::indicator()), self.scalar.clone()]
.into_iter()
.flatten()
.collect()
}
}
impl ::re_types_core::ArchetypeReflectionMarker for Scalar {}
impl Scalar {
/// Create a new `Scalar`.
#[inline]
pub fn new(scalar: impl Into<crate::components::Scalar>) -> Self {
Self {
scalar: try_serialize_field(Self::descriptor_scalar(), [scalar]),
}
}
/// Update only some specific fields of a `Scalar`.
#[inline]
pub fn update_fields() -> Self {
Self::default()
}
/// Clear all the fields of a `Scalar`.
#[inline]
pub fn clear_fields() -> Self {
use ::re_types_core::Loggable as _;
Self {
scalar: Some(SerializedComponentBatch::new(
crate::components::Scalar::arrow_empty(),
Self::descriptor_scalar(),
)),
}
}
/// Partitions the component data into multiple sub-batches.
///
/// Specifically, this transforms the existing [`SerializedComponentBatch`]es data into [`SerializedComponentColumn`]s
/// instead, via [`SerializedComponentBatch::partitioned`].
///
/// This makes it possible to use `RecordingStream::send_columns` to send columnar data directly into Rerun.
///
/// The specified `lengths` must sum to the total length of the component batch.
///
/// [`SerializedComponentColumn`]: [::re_types_core::SerializedComponentColumn]
#[inline]
pub fn columns<I>(
self,
_lengths: I,
) -> SerializationResult<impl Iterator<Item = ::re_types_core::SerializedComponentColumn>>
where
I: IntoIterator<Item = usize> + Clone,
{
let columns = [self
.scalar
.map(|scalar| scalar.partitioned(_lengths.clone()))
.transpose()?];
Ok(columns
.into_iter()
.flatten()
.chain([::re_types_core::indicator_column::<Self>(
_lengths.into_iter().count(),
)?]))
}
/// Helper to partition the component data into unit-length sub-batches.
///
/// This is semantically similar to calling [`Self::columns`] with `std::iter::take(1).repeat(n)`,
/// where `n` is automatically guessed.
#[inline]
pub fn columns_of_unit_batches(
self,
) -> SerializationResult<impl Iterator<Item = ::re_types_core::SerializedComponentColumn>> {
let len_scalar = self.scalar.as_ref().map(|b| b.array.len());
let len = None.or(len_scalar).unwrap_or(0);
self.columns(std::iter::repeat(1).take(len))
}
/// The scalar value to log.
#[inline]
pub fn with_scalar(mut self, scalar: impl Into<crate::components::Scalar>) -> Self {
self.scalar = try_serialize_field(Self::descriptor_scalar(), [scalar]);
self
}
/// This method makes it possible to pack multiple [`crate::components::Scalar`] in a single component batch.
///
/// This only makes sense when used in conjunction with [`Self::columns`]. [`Self::with_scalar`] should
/// be used when logging a single row's worth of data.
#[inline]
pub fn with_many_scalar(
mut self,
scalar: impl IntoIterator<Item = impl Into<crate::components::Scalar>>,
) -> Self {
self.scalar = try_serialize_field(Self::descriptor_scalar(), scalar);
self
}
}
impl ::re_byte_size::SizeBytes for Scalar {
#[inline]
fn heap_size_bytes(&self) -> u64 {
self.scalar.heap_size_bytes()
}
}