1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// DO NOT EDIT! This file was auto-generated by crates/build/re_types_builder/src/codegen/rust/api.rs
// Based on "crates/store/re_types/definitions/rerun/archetypes/scalar.fbs".

#![allow(unused_imports)]
#![allow(unused_parens)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::cloned_instead_of_copied)]
#![allow(clippy::map_flatten)]
#![allow(clippy::needless_question_mark)]
#![allow(clippy::new_without_default)]
#![allow(clippy::redundant_closure)]
#![allow(clippy::too_many_arguments)]
#![allow(clippy::too_many_lines)]

use ::re_types_core::try_serialize_field;
use ::re_types_core::SerializationResult;
use ::re_types_core::{ComponentBatch, SerializedComponentBatch};
use ::re_types_core::{ComponentDescriptor, ComponentName};
use ::re_types_core::{DeserializationError, DeserializationResult};

/// **Archetype**: A double-precision scalar, e.g. for use for time-series plots.
///
/// The current timeline value will be used for the time/X-axis, hence scalars
/// cannot be static.
///
/// When used to produce a plot, this archetype is used to provide the data that
/// is referenced by [`archetypes::SeriesLine`][crate::archetypes::SeriesLine] or [`archetypes::SeriesPoint`][crate::archetypes::SeriesPoint]. You can do
/// this by logging both archetypes to the same path, or alternatively configuring
/// the plot-specific archetypes through the blueprint.
///
/// ## Examples
///
/// ### Update a scalar over time
/// ```ignore
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
///     let rec = rerun::RecordingStreamBuilder::new("rerun_example_scalar_row_updates").spawn()?;
///
///     for step in 0..64 {
///         rec.set_time_sequence("step", step);
///         rec.log("scalars", &rerun::Scalar::new((step as f64 / 10.0).sin()))?;
///     }
///
///     Ok(())
/// }
/// ```
/// <center>
/// <picture>
///   <source media="(max-width: 480px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/480w.png">
///   <source media="(max-width: 768px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/768w.png">
///   <source media="(max-width: 1024px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/1024w.png">
///   <source media="(max-width: 1200px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/1200w.png">
///   <img src="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/full.png" width="640">
/// </picture>
/// </center>
///
/// ### Update a scalar over time, in a single operation
/// ```ignore
/// use rerun::TimeColumn;
///
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
///     let rec = rerun::RecordingStreamBuilder::new("rerun_example_scalar_column_updates").spawn()?;
///
///     let times = TimeColumn::new_sequence("step", 0..64);
///     let scalars = (0..64).map(|step| (step as f64 / 10.0).sin());
///
///     rec.send_columns(
///         "scalars",
///         [times],
///         rerun::Scalar::update_fields()
///             .with_many_scalar(scalars)
///             .columns_of_unit_batches()?,
///     )?;
///
///     Ok(())
/// }
/// ```
/// <center>
/// <picture>
///   <source media="(max-width: 480px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/480w.png">
///   <source media="(max-width: 768px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/768w.png">
///   <source media="(max-width: 1024px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/1024w.png">
///   <source media="(max-width: 1200px)" srcset="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/1200w.png">
///   <img src="https://static.rerun.io/transform3d_column_updates/2b7ccfd29349b2b107fcf7eb8a1291a92cf1cafc/full.png" width="640">
/// </picture>
/// </center>
#[derive(Clone, Debug, PartialEq, Default)]
pub struct Scalar {
    /// The scalar value to log.
    pub scalar: Option<SerializedComponentBatch>,
}

impl Scalar {
    /// Returns the [`ComponentDescriptor`] for [`Self::scalar`].
    #[inline]
    pub fn descriptor_scalar() -> ComponentDescriptor {
        ComponentDescriptor {
            archetype_name: Some("rerun.archetypes.Scalar".into()),
            component_name: "rerun.components.Scalar".into(),
            archetype_field_name: Some("scalar".into()),
        }
    }

    /// Returns the [`ComponentDescriptor`] for the associated indicator component.
    #[inline]
    pub fn descriptor_indicator() -> ComponentDescriptor {
        ComponentDescriptor {
            archetype_name: Some("rerun.archetypes.Scalar".into()),
            component_name: "rerun.components.ScalarIndicator".into(),
            archetype_field_name: None,
        }
    }
}

static REQUIRED_COMPONENTS: once_cell::sync::Lazy<[ComponentDescriptor; 1usize]> =
    once_cell::sync::Lazy::new(|| [Scalar::descriptor_scalar()]);

static RECOMMENDED_COMPONENTS: once_cell::sync::Lazy<[ComponentDescriptor; 1usize]> =
    once_cell::sync::Lazy::new(|| [Scalar::descriptor_indicator()]);

static OPTIONAL_COMPONENTS: once_cell::sync::Lazy<[ComponentDescriptor; 0usize]> =
    once_cell::sync::Lazy::new(|| []);

static ALL_COMPONENTS: once_cell::sync::Lazy<[ComponentDescriptor; 2usize]> =
    once_cell::sync::Lazy::new(|| [Scalar::descriptor_scalar(), Scalar::descriptor_indicator()]);

impl Scalar {
    /// The total number of components in the archetype: 1 required, 1 recommended, 0 optional
    pub const NUM_COMPONENTS: usize = 2usize;
}

/// Indicator component for the [`Scalar`] [`::re_types_core::Archetype`]
pub type ScalarIndicator = ::re_types_core::GenericIndicatorComponent<Scalar>;

impl ::re_types_core::Archetype for Scalar {
    type Indicator = ScalarIndicator;

    #[inline]
    fn name() -> ::re_types_core::ArchetypeName {
        "rerun.archetypes.Scalar".into()
    }

    #[inline]
    fn display_name() -> &'static str {
        "Scalar"
    }

    #[inline]
    fn indicator() -> SerializedComponentBatch {
        #[allow(clippy::unwrap_used)]
        ScalarIndicator::DEFAULT.serialized().unwrap()
    }

    #[inline]
    fn required_components() -> ::std::borrow::Cow<'static, [ComponentDescriptor]> {
        REQUIRED_COMPONENTS.as_slice().into()
    }

    #[inline]
    fn recommended_components() -> ::std::borrow::Cow<'static, [ComponentDescriptor]> {
        RECOMMENDED_COMPONENTS.as_slice().into()
    }

    #[inline]
    fn optional_components() -> ::std::borrow::Cow<'static, [ComponentDescriptor]> {
        OPTIONAL_COMPONENTS.as_slice().into()
    }

    #[inline]
    fn all_components() -> ::std::borrow::Cow<'static, [ComponentDescriptor]> {
        ALL_COMPONENTS.as_slice().into()
    }

    #[inline]
    fn from_arrow_components(
        arrow_data: impl IntoIterator<Item = (ComponentDescriptor, arrow::array::ArrayRef)>,
    ) -> DeserializationResult<Self> {
        re_tracing::profile_function!();
        use ::re_types_core::{Loggable as _, ResultExt as _};
        let arrays_by_descr: ::nohash_hasher::IntMap<_, _> = arrow_data.into_iter().collect();
        let scalar = arrays_by_descr
            .get(&Self::descriptor_scalar())
            .map(|array| SerializedComponentBatch::new(array.clone(), Self::descriptor_scalar()));
        Ok(Self { scalar })
    }
}

impl ::re_types_core::AsComponents for Scalar {
    #[inline]
    fn as_serialized_batches(&self) -> Vec<SerializedComponentBatch> {
        use ::re_types_core::Archetype as _;
        [Some(Self::indicator()), self.scalar.clone()]
            .into_iter()
            .flatten()
            .collect()
    }
}

impl ::re_types_core::ArchetypeReflectionMarker for Scalar {}

impl Scalar {
    /// Create a new `Scalar`.
    #[inline]
    pub fn new(scalar: impl Into<crate::components::Scalar>) -> Self {
        Self {
            scalar: try_serialize_field(Self::descriptor_scalar(), [scalar]),
        }
    }

    /// Update only some specific fields of a `Scalar`.
    #[inline]
    pub fn update_fields() -> Self {
        Self::default()
    }

    /// Clear all the fields of a `Scalar`.
    #[inline]
    pub fn clear_fields() -> Self {
        use ::re_types_core::Loggable as _;
        Self {
            scalar: Some(SerializedComponentBatch::new(
                crate::components::Scalar::arrow_empty(),
                Self::descriptor_scalar(),
            )),
        }
    }

    /// Partitions the component data into multiple sub-batches.
    ///
    /// Specifically, this transforms the existing [`SerializedComponentBatch`]es data into [`SerializedComponentColumn`]s
    /// instead, via [`SerializedComponentBatch::partitioned`].
    ///
    /// This makes it possible to use `RecordingStream::send_columns` to send columnar data directly into Rerun.
    ///
    /// The specified `lengths` must sum to the total length of the component batch.
    ///
    /// [`SerializedComponentColumn`]: [::re_types_core::SerializedComponentColumn]
    #[inline]
    pub fn columns<I>(
        self,
        _lengths: I,
    ) -> SerializationResult<impl Iterator<Item = ::re_types_core::SerializedComponentColumn>>
    where
        I: IntoIterator<Item = usize> + Clone,
    {
        let columns = [self
            .scalar
            .map(|scalar| scalar.partitioned(_lengths.clone()))
            .transpose()?];
        Ok(columns
            .into_iter()
            .flatten()
            .chain([::re_types_core::indicator_column::<Self>(
                _lengths.into_iter().count(),
            )?]))
    }

    /// Helper to partition the component data into unit-length sub-batches.
    ///
    /// This is semantically similar to calling [`Self::columns`] with `std::iter::take(1).repeat(n)`,
    /// where `n` is automatically guessed.
    #[inline]
    pub fn columns_of_unit_batches(
        self,
    ) -> SerializationResult<impl Iterator<Item = ::re_types_core::SerializedComponentColumn>> {
        let len_scalar = self.scalar.as_ref().map(|b| b.array.len());
        let len = None.or(len_scalar).unwrap_or(0);
        self.columns(std::iter::repeat(1).take(len))
    }

    /// The scalar value to log.
    #[inline]
    pub fn with_scalar(mut self, scalar: impl Into<crate::components::Scalar>) -> Self {
        self.scalar = try_serialize_field(Self::descriptor_scalar(), [scalar]);
        self
    }

    /// This method makes it possible to pack multiple [`crate::components::Scalar`] in a single component batch.
    ///
    /// This only makes sense when used in conjunction with [`Self::columns`]. [`Self::with_scalar`] should
    /// be used when logging a single row's worth of data.
    #[inline]
    pub fn with_many_scalar(
        mut self,
        scalar: impl IntoIterator<Item = impl Into<crate::components::Scalar>>,
    ) -> Self {
        self.scalar = try_serialize_field(Self::descriptor_scalar(), scalar);
        self
    }
}

impl ::re_byte_size::SizeBytes for Scalar {
    #[inline]
    fn heap_size_bytes(&self) -> u64 {
        self.scalar.heap_size_bytes()
    }
}