1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
//! Performs the layout of the graph, i.e. converting an [`LayoutRequest`] into a [`Layout`].
// For now we have only a single layout provider that is based on a force-directed model.
// In the future, this could be expanded to support different (specialized layout alorithms).
// Low-hanging fruit would be tree-based layouts. But we could also think about more complex
// layouts, such as `dot` from `graphviz`.
use egui::{Pos2, Rect, Vec2};
use fjadra::{self as fj, Simulation};
use crate::graph::{EdgeId, NodeId};
use super::{
params::ForceLayoutParams,
request::NodeTemplate,
slots::{slotted_edges, Slot, SlotKind},
EdgeGeometry, EdgeTemplate, Layout, LayoutRequest, PathGeometry,
};
impl<'a> From<&'a NodeTemplate> for fj::Node {
fn from(node: &'a NodeTemplate) -> Self {
match node.fixed_position {
Some(pos) => Self::default().fixed_position(pos.x as f64, pos.y as f64),
_ => Self::default(),
}
}
}
// TODO(grtlr): Do this more efficiently, as this currently rebuilds all helper functions.
pub fn update_simulation(
mut simulation: fj::Simulation,
params: &ForceLayoutParams,
edges: Vec<(usize, usize)>,
radii: Vec<f64>,
) -> Simulation {
// We destructure here to get compiler warnings if we add new parameters.
let &ForceLayoutParams {
force_link_enabled,
force_link_distance,
force_link_iterations,
force_many_body_enabled,
force_many_body_strength,
force_position_enabled,
force_position_strength,
force_position_pos,
force_center_enabled,
force_center_strength,
force_collision_enabled,
force_collision_strength,
force_collision_iterations,
} = params;
if **force_link_enabled {
simulation = simulation.add_force(
"link",
fj::Link::new(edges)
.distance(**force_link_distance)
.iterations(**force_link_iterations as usize),
);
}
if **force_many_body_enabled {
simulation = simulation.add_force(
"charge",
fj::ManyBody::new().strength(**force_many_body_strength),
);
}
if **force_position_enabled {
simulation = simulation
.add_force(
"x",
fj::PositionX::new()
.strength(**force_position_strength)
.x(force_position_pos[0].into()),
)
.add_force(
"y",
fj::PositionY::new()
.strength(**force_position_strength)
.y(force_position_pos[1].into()),
);
}
if **force_collision_enabled {
simulation = simulation.add_force(
"collision",
fj::Collide::new()
.radius(move |i| radii[i])
.iterations(**force_collision_iterations as usize)
.strength(**force_collision_strength),
);
}
if **force_center_enabled {
simulation = simulation.add_force(
"center",
fj::Center::new().strength(**force_center_strength),
);
}
simulation
}
pub struct ForceLayoutProvider {
simulation: fj::Simulation,
pub request: LayoutRequest,
}
fn considered_edges(request: &LayoutRequest) -> Vec<(usize, usize)> {
let node_index: ahash::HashMap<NodeId, usize> = request
.all_nodes()
.enumerate()
.map(|(i, (id, _))| (id, i))
.collect();
request
.all_edges()
.filter(|(id, _)| !id.is_self_edge())
.map(|(id, _)| (node_index[&id.source], node_index[&id.target]))
.collect()
}
impl ForceLayoutProvider {
pub fn new(request: LayoutRequest, params: &ForceLayoutParams) -> Self {
let nodes = request.all_nodes().map(|(_, v)| fj::Node::from(v));
let radii = request
.all_nodes()
.map(|(_, v)| v.size.max_elem() as f64 / 2.0)
.collect::<Vec<_>>();
let edges = considered_edges(&request);
let simulation = fj::SimulationBuilder::default().build(nodes);
let simulation = update_simulation(simulation, params, edges, radii);
Self {
simulation,
request,
}
}
pub fn new_with_previous(
request: LayoutRequest,
layout: &Layout,
params: &ForceLayoutParams,
) -> Self {
let nodes = request.all_nodes().map(|(id, template)| {
let node = fj::Node::from(template);
if template.fixed_position.is_none() {
if let Some(rect) = layout.get_node(&id) {
let pos = rect.center();
return node.position(pos.x as f64, pos.y as f64);
}
}
node
});
let radii = request
.all_nodes()
.map(|(_, v)| v.size.max_elem() as f64 / 2.0)
.collect::<Vec<_>>();
let edges = considered_edges(&request);
let simulation = fj::SimulationBuilder::default().build(nodes);
let simulation = update_simulation(simulation, params, edges, radii);
Self {
simulation,
request,
}
}
fn layout(&self) -> Layout {
// We make use of the fact here that the simulation is stable, i.e. the
// order of the nodes is the same as in the `request`.
let mut positions = self.simulation.positions();
let mut layout = Layout::empty();
for (entity, graph) in &self.request.graphs {
let mut current_rect = Rect::NOTHING;
for (node, template) in &graph.nodes {
let [x, y] = positions.next().expect("positions has to match the layout");
let pos = Pos2::new(x as f32, y as f32);
let extent = Rect::from_center_size(pos, template.size);
current_rect = current_rect.union(extent);
layout.nodes.insert(*node, extent);
}
layout.entities.push((entity.clone(), current_rect));
// Multiple edges can occupy the same space in the layout.
for Slot { kind, edges } in
slotted_edges(graph.edges.values().flat_map(|ts| ts.iter())).values()
{
match kind {
SlotKind::SelfEdge { node } => {
let rect = layout.nodes[node];
let id = EdgeId::self_edge(*node);
let geometries = layout.edges.entry(id).or_default();
geometries.extend(layout_self_edges(rect, edges));
}
SlotKind::Regular {
source: slot_source,
target: slot_target,
} => {
if let &[edge] = edges.as_slice() {
// A single regular straight edge.
let target_arrow = edge.target_arrow;
let geometries = layout
.edges
.entry(EdgeId {
source: edge.source,
target: edge.target,
})
.or_default();
let source = layout.nodes[&edge.source];
let target = layout.nodes[&edge.target];
// We only draw edges if they can be displayed meaningfully.
if source.center() != target.center() && !source.intersects(target) {
geometries.push(EdgeGeometry {
target_arrow,
path: line_segment(source, target),
});
}
} else {
// Multiple edges occupy the same space, so we fan them out.
let num_edges = edges.len();
for (i, edge) in edges.iter().enumerate() {
let source_rect = layout.nodes[slot_source];
let target_rect = layout.nodes[slot_target];
if source_rect.center() == target_rect.center()
|| source_rect.intersects(target_rect)
{
// There is no meaningful geometry to draw here.
// Keep in mind that self-edges are handled separately above.
continue;
}
let d = (target_rect.center() - source_rect.center()).normalized();
let source_pos = source_rect.intersects_ray_from_center(d);
let target_pos = target_rect.intersects_ray_from_center(-d);
let delta = target_pos - source_pos;
// Controls the amount of space (in scene coordinates) that a slot can occupy.
let fan_amount = (delta.length() * 0.3).min(40.);
// How far along the edge should the control points be?
let c1_base = source_pos + delta * 0.25;
let c2_base = source_pos + delta * 0.75;
let base_n = Vec2::new(-delta.y, delta.x).normalized();
let c1_left = c1_base + base_n * (fan_amount / 2.);
let c2_left = c2_base + base_n * (fan_amount / 2.);
let c1_right = c1_base - base_n * (fan_amount / 2.);
let c2_right = c2_base - base_n * (fan_amount / 2.);
// Calculate an offset for the control points based on index `i`, spreading points equidistantly.
let t = (i as f32) / (num_edges - 1) as f32;
// Compute control points, `c1` and `c2`, based on the offset
let c1 = c1_right + (c1_left - c1_right) * t;
let c2 = c2_right + (c2_left - c2_right) * t;
let geometries = layout
.edges
.entry(EdgeId {
source: edge.source,
target: edge.target,
})
.or_default();
// We potentially need to restore the direction of the edge, after we have used it's canonical form earlier.
let path = if edge.source == *slot_source {
PathGeometry::CubicBezier {
source: source_pos,
target: target_pos,
control: [c1, c2],
}
} else {
PathGeometry::CubicBezier {
source: target_pos,
target: source_pos,
control: [c2, c1],
}
};
geometries.push(EdgeGeometry {
target_arrow: edge.target_arrow,
path,
});
}
}
}
}
}
}
layout
}
/// Returns `true` if finished.
pub fn tick(&mut self) -> Layout {
self.simulation.tick(1);
self.layout()
}
pub fn is_finished(&self) -> bool {
self.simulation.is_finished()
}
}
/// Helper function to calculate the line segment between two rectangles.
fn line_segment(source: Rect, target: Rect) -> PathGeometry {
let source_center = source.center();
let target_center = target.center();
// Calculate direction vector from source to target
let direction = (target_center - source_center).normalized();
// Find the border points on both rectangles
let source_point = source.intersects_ray_from_center(direction);
let target_point = target.intersects_ray_from_center(-direction); // Reverse direction for target
PathGeometry::Line {
source: source_point,
target: target_point,
}
}
fn layout_self_edges<'a>(
rect: Rect,
edges: &'a [&EdgeTemplate],
) -> impl Iterator<Item = EdgeGeometry> + 'a {
edges.iter().enumerate().map(move |(i, edge)| {
let offset = (i + 1) as f32;
let target_arrow = edge.target_arrow;
let anchor = rect.center_top();
EdgeGeometry {
target_arrow,
path: PathGeometry::CubicBezier {
// TODO(grtlr): We could probably consider the actual node size here.
source: anchor + Vec2::LEFT * 4.,
target: anchor + Vec2::RIGHT * 4.,
// TODO(grtlr): The actual length of that spline should follow the `distance` parameter of the link force.
control: [
anchor + Vec2::new(-30. * offset, -40. * offset),
anchor + Vec2::new(30. * offset, -40. * offset),
],
},
}
})
}