use re_log_types::{EntityPath, ResolvedTimeRange};
use re_types::{
components::AggregationPolicy,
datatypes::{TimeRange, TimeRangeBoundary},
};
use re_viewer_context::{ViewQuery, ViewerContext};
use crate::{
aggregation::{AverageAggregator, MinMaxAggregator},
PlotPoint, PlotSeries, PlotSeriesKind, ScatterAttrs,
};
pub fn determine_time_per_pixel(
ctx: &ViewerContext<'_>,
plot_mem: Option<&egui_plot::PlotMemory>,
) -> f64 {
let egui_ctx = ctx.egui_ctx;
let points_per_time = plot_mem
.as_ref()
.map_or(1.0, |mem| mem.transform().dpos_dvalue_x());
let pixels_per_time = egui_ctx.pixels_per_point() as f64 * points_per_time;
1.0 / pixels_per_time.max(f64::EPSILON)
}
pub fn determine_time_range(
time_cursor: re_log_types::TimeInt,
time_offset: i64,
data_result: &re_viewer_context::DataResult,
plot_mem: Option<&egui_plot::PlotMemory>,
) -> ResolvedTimeRange {
let query_range = data_result.query_range();
let visible_time_range = match query_range {
re_viewer_context::QueryRange::TimeRange(time_range) => time_range.clone(),
re_viewer_context::QueryRange::LatestAt => {
re_log::error_once!(
"Unexexpected LatestAt query for time series data result at path {:?}",
data_result.entity_path
);
TimeRange {
start: TimeRangeBoundary::AT_CURSOR,
end: TimeRangeBoundary::AT_CURSOR,
}
}
};
let mut time_range =
ResolvedTimeRange::from_relative_time_range(&visible_time_range, time_cursor);
let is_auto_bounds = plot_mem.map_or(false, |mem| mem.auto_bounds.x || mem.auto_bounds.y);
let plot_bounds = plot_mem.map(|mem| {
let bounds = mem.bounds().range_x();
let x_min = bounds.start().floor() as i64;
let x_max = bounds.end().ceil() as i64;
(
x_min.saturating_add(time_offset),
x_max.saturating_add(time_offset),
)
});
if !is_auto_bounds {
if let Some((x_min, x_max)) = plot_bounds {
time_range.set_min(i64::max(time_range.min().as_i64(), x_min));
time_range.set_max(i64::min(time_range.max().as_i64(), x_max));
}
}
time_range
}
#[allow(clippy::too_many_arguments)]
pub fn points_to_series(
entity_path: &EntityPath,
time_per_pixel: f64,
points: Vec<PlotPoint>,
store: &re_chunk_store::ChunkStore,
query: &ViewQuery<'_>,
series_label: String,
aggregator: AggregationPolicy,
all_series: &mut Vec<PlotSeries>,
) {
re_tracing::profile_scope!("secondary", &entity_path.to_string());
if points.is_empty() {
return;
}
let (aggregation_factor, points) = apply_aggregation(aggregator, time_per_pixel, points, query);
let min_time = store
.entity_min_time(&query.timeline, entity_path)
.map_or(points.first().map_or(0, |p| p.time), |time| time.as_i64());
if points.len() == 1 {
let mut kind = points[0].attrs.kind;
if kind == PlotSeriesKind::Continuous {
kind = PlotSeriesKind::Scatter(ScatterAttrs::default());
}
all_series.push(PlotSeries {
label: series_label,
color: points[0].attrs.color,
radius_ui: points[0].attrs.radius_ui,
kind,
points: vec![(points[0].time, points[0].value)],
entity_path: entity_path.clone(),
aggregator,
aggregation_factor,
min_time,
});
} else {
add_series_runs(
series_label,
points,
entity_path,
aggregator,
aggregation_factor,
min_time,
all_series,
);
}
}
pub fn apply_aggregation(
aggregator: AggregationPolicy,
time_per_pixel: f64,
points: Vec<PlotPoint>,
query: &ViewQuery<'_>,
) -> (f64, Vec<PlotPoint>) {
let aggregation_duration = time_per_pixel; let num_points_before = points.len() as f64;
let multiple_values_per_time_stamp = || points.windows(2).any(|w| w[0].time == w[1].time);
let should_aggregate = aggregator != AggregationPolicy::Off
&& (2.0 <= aggregation_duration || multiple_values_per_time_stamp());
let points = if should_aggregate {
re_tracing::profile_scope!("aggregate", aggregator.to_string());
#[allow(clippy::match_same_arms)] match aggregator {
AggregationPolicy::Off => points,
AggregationPolicy::Average => {
AverageAggregator::aggregate(aggregation_duration, &points)
}
AggregationPolicy::Min => {
MinMaxAggregator::Min.aggregate(aggregation_duration, &points)
}
AggregationPolicy::Max => {
MinMaxAggregator::Max.aggregate(aggregation_duration, &points)
}
AggregationPolicy::MinMax => {
MinMaxAggregator::MinMax.aggregate(aggregation_duration, &points)
}
AggregationPolicy::MinMaxAverage => {
MinMaxAggregator::MinMaxAverage.aggregate(aggregation_duration, &points)
}
}
} else {
points
};
let num_points_after = points.len() as f64;
let actual_aggregation_factor = num_points_before / num_points_after;
re_log::trace!(
id = %query.view_id,
?aggregator,
aggregation_duration,
num_points_before,
num_points_after,
actual_aggregation_factor,
);
(actual_aggregation_factor, points)
}
#[allow(clippy::needless_pass_by_value)]
#[inline(never)] fn add_series_runs(
series_label: String,
points: Vec<PlotPoint>,
entity_path: &EntityPath,
aggregator: AggregationPolicy,
aggregation_factor: f64,
min_time: i64,
all_series: &mut Vec<PlotSeries>,
) {
re_tracing::profile_function!();
let num_points = points.len();
let mut attrs = points[0].attrs.clone();
let mut series: PlotSeries = PlotSeries {
label: series_label.clone(),
color: attrs.color,
radius_ui: attrs.radius_ui,
points: Vec::with_capacity(num_points),
kind: attrs.kind,
entity_path: entity_path.clone(),
aggregator,
aggregation_factor,
min_time,
};
for (i, p) in points.into_iter().enumerate() {
if p.attrs == attrs {
series.points.push((p.time, p.value));
} else {
attrs = p.attrs;
let prev_series = std::mem::replace(
&mut series,
PlotSeries {
label: series_label.clone(),
color: attrs.color,
radius_ui: attrs.radius_ui,
kind: attrs.kind,
points: Vec::with_capacity(num_points - i),
entity_path: entity_path.clone(),
aggregator,
aggregation_factor,
min_time,
},
);
let cur_continuous = matches!(attrs.kind, PlotSeriesKind::Continuous);
let prev_continuous = matches!(prev_series.kind, PlotSeriesKind::Continuous);
let prev_point = *prev_series.points.last().unwrap();
all_series.push(prev_series);
if cur_continuous && prev_continuous {
series.points.push(prev_point);
}
series.points.push((p.time, p.value));
}
}
if !series.points.is_empty() {
all_series.push(series);
}
}