1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
//! Upload images to [`re_renderer`].

use std::borrow::Cow;

use anyhow::Context as _;
use egui::{util::hash, Rangef};
use wgpu::TextureFormat;

use re_renderer::{
    config::DeviceCaps,
    pad_rgb_to_rgba,
    renderer::{ColorMapper, ColormappedTexture, ShaderDecoding},
    resource_managers::{
        ImageDataDesc, SourceImageDataFormat, YuvMatrixCoefficients, YuvPixelLayout, YuvRange,
    },
    RenderContext,
};
use re_types::components::ClassId;
use re_types::datatypes::{ChannelDatatype, ColorModel, ImageFormat, PixelFormat};
use re_types::image::ImageKind;

use crate::{
    gpu_bridge::colormap::colormap_to_re_renderer, image_info::ColormapWithRange, Annotations,
    ImageInfo, ImageStats,
};

use super::get_or_create_texture;

// ----------------------------------------------------------------------------

/// Returns a texture key for the given image.
///
/// If the key changes, we upload a new texture.
fn generate_texture_key(image: &ImageInfo) -> u64 {
    // We need to inclde anything that, if changes, should result in a new texture being uploaded.
    let ImageInfo {
        buffer_row_id: blob_row_id,
        buffer: _, // we hash `blob_row_id` instead; much faster!

        format,
        kind,
    } = image;

    hash((blob_row_id, format, kind))
}

/// `colormap` is currently only used for depth images.
pub fn image_to_gpu(
    render_ctx: &RenderContext,
    debug_name: &str,
    image: &ImageInfo,
    image_stats: &ImageStats,
    annotations: &Annotations,
    colormap: Option<&ColormapWithRange>,
) -> anyhow::Result<ColormappedTexture> {
    re_tracing::profile_function!();

    let texture_key = generate_texture_key(image);

    match image.kind {
        ImageKind::Color => {
            color_image_to_gpu(render_ctx, debug_name, texture_key, image, image_stats)
        }
        ImageKind::Depth => depth_image_to_gpu(
            render_ctx,
            debug_name,
            texture_key,
            image,
            image_stats,
            colormap,
        ),
        ImageKind::Segmentation => segmentation_image_to_gpu(
            render_ctx,
            debug_name,
            texture_key,
            image,
            image_stats,
            annotations,
        ),
    }
}

fn color_image_to_gpu(
    render_ctx: &RenderContext,
    debug_name: &str,
    texture_key: u64,
    image: &ImageInfo,
    image_stats: &ImageStats,
) -> anyhow::Result<ColormappedTexture> {
    re_tracing::profile_function!();

    let image_format = image.format;

    let texture_handle = get_or_create_texture(render_ctx, texture_key, || {
        texture_creation_desc_from_color_image(render_ctx.device_caps(), image, debug_name)
    })
    .map_err(|err| anyhow::anyhow!("{err}"))?;

    let texture_format = texture_handle.format();

    let shader_decoding = required_shader_decode(render_ctx.device_caps(), &image_format);

    // TODO(emilk): let the user specify the color space.
    let decode_srgb = texture_format == TextureFormat::Rgba8Unorm
        || image_decode_srgb_gamma_heuristic(image_stats, image_format);

    // Special casing for normalized textures used above:
    let range = if matches!(
        texture_format,
        TextureFormat::R8Unorm | TextureFormat::Rgba8Unorm | TextureFormat::Bgra8Unorm
    ) {
        emath::Rangef::new(0.0, 1.0)
    } else if texture_format == TextureFormat::R8Snorm {
        emath::Rangef::new(-1.0, 1.0)
    } else if let Some(shader_decoding) = shader_decoding {
        match shader_decoding {
            ShaderDecoding::Bgr => image_data_range_heuristic(image_stats, &image_format),
        }
    } else {
        image_data_range_heuristic(image_stats, &image_format)
    };

    let color_mapper = if let Some(shader_decoding) = shader_decoding {
        match shader_decoding {
            // We only have 1D color maps, therefore BGR formats can't have color maps.
            ShaderDecoding::Bgr => ColorMapper::OffRGB,
        }
    } else if texture_format.components() == 1 {
        // TODO(andreas): support colormap property
        if decode_srgb {
            // Leave grayscale images unmolested - don't apply a colormap to them.
            ColorMapper::OffGrayscale
        } else {
            // This is something like a uint16 image, or a float image
            // with a range outside of 0-255 (see image_decode_srgb_gamma_heuristic).
            // `tensor_data_range_heuristic` will make sure we map this to a 0-1
            // range, and then we apply a gray colormap to it.
            ColorMapper::Function(re_renderer::Colormap::Grayscale)
        }
    } else {
        ColorMapper::OffRGB
    };

    // Assume that the texture has a separate (non-pre-multiplied) alpha.
    // TODO(wumpf): There should be a way to specify whether a texture uses pre-multiplied alpha or not.
    let multiply_rgb_with_alpha = image_format.has_alpha();

    let gamma = 1.0;

    re_log::trace_once!(
        "color_tensor_to_gpu {debug_name:?}, range: {range:?}, decode_srgb: {decode_srgb:?}, multiply_rgb_with_alpha: {multiply_rgb_with_alpha:?}, gamma: {gamma:?}, color_mapper: {color_mapper:?}",
    );

    Ok(ColormappedTexture {
        texture: texture_handle,
        range: [range.min, range.max],
        decode_srgb,
        multiply_rgb_with_alpha,
        gamma,
        color_mapper,
        shader_decoding,
    })
}

/// Get a valid, finite range for the gpu to use.
// TODO(#4624): The range should be determined by a `DataRange` component. In absence this, heuristics apply.
pub fn image_data_range_heuristic(image_stats: &ImageStats, image_format: &ImageFormat) -> Rangef {
    let (min, max) = image_stats.finite_range;

    let min = min as f32;
    let max = max as f32;

    // Apply heuristic for ranges that are typically expected depending on the data type and the finite (!) range.
    // (we ignore NaN/Inf values heres, since they are usually there by accident!)
    if image_format.is_float() && 0.0 <= min && max <= 1.0 {
        // Float values that are all between 0 and 1, assume that this is the range.
        Rangef::new(0.0, 1.0)
    } else if 0.0 <= min && max <= 255.0 {
        // If all values are between 0 and 255, assume this is the range.
        // (This is very common, independent of the data type)
        Rangef::new(0.0, 255.0)
    } else if min == max {
        // uniform range. This can explode the colormapping, so let's map all colors to the middle:
        Rangef::new(min - 1.0, max + 1.0)
    } else {
        // Use range as is if nothing matches.
        Rangef::new(min, max)
    }
}

/// Return whether an image should be assumed to be encoded in sRGB color space ("gamma space", no EOTF applied).
fn image_decode_srgb_gamma_heuristic(image_stats: &ImageStats, image_format: ImageFormat) -> bool {
    if image_format.pixel_format.is_some() {
        // Have to do the conversion because we don't use an `Srgb` texture format.
        true
    } else {
        let (min, max) = image_stats.finite_range;

        #[allow(clippy::if_same_then_else)]
        if 0.0 <= min && max <= 255.0 {
            // If the range is suspiciously reminding us of a "regular image", assume sRGB.
            true
        } else if image_format.datatype().is_float() && 0.0 <= min && max <= 1.0 {
            // Floating point images between 0 and 1 are often sRGB as well.
            true
        } else {
            false
        }
    }
}

/// Determines if and how the shader needs to decode the image.
///
/// Assumes creation as done by [`texture_creation_desc_from_color_image`].
pub fn required_shader_decode(
    device_caps: &DeviceCaps,
    image_format: &ImageFormat,
) -> Option<ShaderDecoding> {
    let color_model = image_format.color_model();

    if image_format.pixel_format.is_none() && color_model == ColorModel::BGR
        || color_model == ColorModel::BGRA
    {
        // U8 can be converted to RGBA without the shader's help since there's a format for it.
        if image_format.datatype() == ChannelDatatype::U8
            && device_caps.tier.support_bgra_textures()
        {
            None
        } else {
            Some(ShaderDecoding::Bgr)
        }
    } else {
        None
    }
}

/// Creates a [`ImageDataDesc`] for creating a texture from an [`ImageInfo`].
///
/// The resulting texture has requirements as describe by [`required_shader_decode`].
///
/// TODO(andreas): The consumer needs to be aware of bgr conversions. Other conversions are already taken care of upon upload.
pub fn texture_creation_desc_from_color_image<'a>(
    device_caps: &DeviceCaps,
    image: &'a ImageInfo,
    debug_name: &'a str,
) -> ImageDataDesc<'a> {
    re_tracing::profile_function!();

    // TODO(#7608): All image data ingestion conversions should all be handled by re_renderer!

    let (data, format) = if let Some(pixel_format) = image.format.pixel_format {
        let data = cast_slice_to_cow(image.buffer.as_slice());
        let coefficients = match pixel_format.yuv_matrix_coefficients() {
            re_types::image::YuvMatrixCoefficients::Bt601 => YuvMatrixCoefficients::Bt601,
            re_types::image::YuvMatrixCoefficients::Bt709 => YuvMatrixCoefficients::Bt709,
        };

        let range = match pixel_format.is_limited_yuv_range() {
            true => YuvRange::Limited,
            false => YuvRange::Full,
        };

        let format = match pixel_format {
            // For historical reasons, using Bt.709 for fully planar formats and Bt.601 for others.
            //
            // TODO(andreas): Investigate if there's underlying expectation for some of these (for instance I suspect that NV12 is "usually" BT601).
            // TODO(andreas): Expose coefficients. It's probably still the better default (for instance that's what jpeg still uses),
            // but should confirm & back that up!
            //
            PixelFormat::Y_U_V24_FullRange | PixelFormat::Y_U_V24_LimitedRange => {
                SourceImageDataFormat::Yuv {
                    layout: YuvPixelLayout::Y_U_V444,
                    range,
                    coefficients,
                }
            }

            PixelFormat::Y_U_V16_FullRange | PixelFormat::Y_U_V16_LimitedRange => {
                SourceImageDataFormat::Yuv {
                    layout: YuvPixelLayout::Y_U_V422,
                    range,
                    coefficients,
                }
            }

            PixelFormat::Y_U_V12_FullRange | PixelFormat::Y_U_V12_LimitedRange => {
                SourceImageDataFormat::Yuv {
                    layout: YuvPixelLayout::Y_U_V420,
                    range,
                    coefficients,
                }
            }

            PixelFormat::Y8_FullRange | PixelFormat::Y8_LimitedRange => {
                SourceImageDataFormat::Yuv {
                    layout: YuvPixelLayout::Y400,
                    range,
                    coefficients,
                }
            }

            PixelFormat::NV12 => SourceImageDataFormat::Yuv {
                layout: YuvPixelLayout::Y_UV420,
                range,
                coefficients,
            },

            PixelFormat::YUY2 => SourceImageDataFormat::Yuv {
                layout: YuvPixelLayout::YUYV422,
                range,
                coefficients,
            },
        };

        (data, format)
    } else {
        let color_model = image.format.color_model();
        let datatype = image.format.datatype();

        match (color_model, datatype) {
            // sRGB(A) handling is done by `ColormappedTexture`.
            // Why not use `Rgba8UnormSrgb`? Because premul must happen _before_ sRGB decode, so we can't
            // use a "Srgb-aware" texture like `Rgba8UnormSrgb` for RGBA.
            (ColorModel::RGB, ChannelDatatype::U8) => (
                pad_rgb_to_rgba(&image.buffer, u8::MAX).into(),
                SourceImageDataFormat::WgpuCompatible(TextureFormat::Rgba8Unorm),
            ),
            (ColorModel::RGBA, ChannelDatatype::U8) => (
                cast_slice_to_cow(&image.buffer),
                SourceImageDataFormat::WgpuCompatible(TextureFormat::Rgba8Unorm),
            ),

            // Make use of wgpu's BGR(A)8 formats if possible.
            //
            // From the pov of our on-the-fly decoding textured rect shader this is just a strange special case
            // given that it already has to deal with other BGR(A) formats.
            //
            // However, we have other places where we don't have the luxury of having a shader that can do the decoding for us.
            // In those cases we'd like to support as many formats as possible without decoding.
            //
            // (in some hopefully not too far future, re_renderer will have an internal conversion pipeline
            // that injects on-the-fly texture conversion from source formats before the consumer of a given texture is run
            // and caches the result alongside with the source data)
            //
            // See also [`required_shader_decode`] which lists this case as a format that does not need to be decoded.
            (ColorModel::BGR, ChannelDatatype::U8) => {
                let padded_data = pad_rgb_to_rgba(&image.buffer, u8::MAX).into();
                let texture_format = if required_shader_decode(device_caps, &image.format).is_some()
                {
                    TextureFormat::Rgba8Unorm
                } else {
                    TextureFormat::Bgra8Unorm
                };
                (
                    padded_data,
                    SourceImageDataFormat::WgpuCompatible(texture_format),
                )
            }
            (ColorModel::BGRA, ChannelDatatype::U8) => {
                let texture_format = if required_shader_decode(device_caps, &image.format).is_some()
                {
                    TextureFormat::Rgba8Unorm
                } else {
                    TextureFormat::Bgra8Unorm
                };
                (
                    cast_slice_to_cow(&image.buffer),
                    SourceImageDataFormat::WgpuCompatible(texture_format),
                )
            }

            _ => {
                // Fallback to general case:
                return general_texture_creation_desc_from_image(
                    debug_name,
                    image,
                    color_model,
                    datatype,
                );
            }
        }
    };

    ImageDataDesc {
        label: debug_name.into(),
        data,
        format,
        width_height: image.width_height(),
    }
}

fn depth_image_to_gpu(
    render_ctx: &RenderContext,
    debug_name: &str,
    texture_key: u64,
    image: &ImageInfo,
    image_stats: &ImageStats,
    colormap_with_range: Option<&ColormapWithRange>,
) -> anyhow::Result<ColormappedTexture> {
    re_tracing::profile_function!();

    if let Some(pixel_format) = image.format.pixel_format {
        anyhow::bail!("Depth image does not support the PixelFormat {pixel_format}");
    }

    if image.format.color_model() != ColorModel::L {
        anyhow::bail!(
            "Depth image does not support the ColorModel {}",
            image.format.color_model()
        );
    }

    let datatype = image.format.datatype();

    let ColormapWithRange {
        value_range,
        colormap,
    } = colormap_with_range
        .cloned()
        .unwrap_or_else(|| ColormapWithRange::default_for_depth_images(image_stats));

    let texture = get_or_create_texture(render_ctx, texture_key, || {
        general_texture_creation_desc_from_image(debug_name, image, ColorModel::L, datatype)
    })
    .map_err(|err| anyhow::anyhow!("Failed to create depth texture: {err}"))?;

    Ok(ColormappedTexture {
        texture,
        range: value_range,
        decode_srgb: false,
        multiply_rgb_with_alpha: false,
        gamma: 1.0,
        color_mapper: ColorMapper::Function(colormap_to_re_renderer(colormap)),
        shader_decoding: None,
    })
}

fn segmentation_image_to_gpu(
    render_ctx: &RenderContext,
    debug_name: &str,
    texture_key: u64,
    image: &ImageInfo,
    image_stats: &ImageStats,
    annotations: &Annotations,
) -> anyhow::Result<ColormappedTexture> {
    re_tracing::profile_function!();

    if let Some(pixel_format) = image.format.pixel_format {
        anyhow::bail!("Segmentation image does not support the PixelFormat {pixel_format}");
    }

    if image.format.color_model() != ColorModel::L {
        anyhow::bail!(
            "Segmentation image does not support the ColorModel {}",
            image.format.color_model()
        );
    }

    let datatype = image.format.datatype();

    let colormap_key = hash(annotations.row_id());

    let (_, mut max) = image_stats
        .range
        .ok_or_else(|| anyhow::anyhow!("compressed_tensor!?"))?;

    // We only support u8 and u16 class ids.
    // Any values greater than this will be unmapped in the segmentation image.
    max = max.min(65535.0);

    // We pack the colormap into a 2D texture so we don't go over the max texture size.
    // We only support u8 and u16 class ids, so 256^2 is the biggest texture we need.
    let num_colors = (max + 1.0) as usize;
    let colormap_width = 256;
    let colormap_height = num_colors.div_ceil(colormap_width);

    let colormap_texture_handle = get_or_create_texture(render_ctx, colormap_key, || {
        let data: Vec<u8> = (0..(colormap_width * colormap_height))
            .flat_map(|id| {
                let color = annotations
                    .resolved_class_description(Some(ClassId::from(id as u16)))
                    .annotation_info()
                    .color()
                    .unwrap_or(re_renderer::Color32::TRANSPARENT);
                color.to_array() // premultiplied!
            })
            .collect();

        ImageDataDesc {
            label: "class_id_colormap".into(),
            data: data.into(),
            format: SourceImageDataFormat::WgpuCompatible(TextureFormat::Rgba8UnormSrgb),
            width_height: [colormap_width as u32, colormap_height as u32],
        }
    })
    .context("Failed to create class_id_colormap.")?;

    let main_texture_handle = get_or_create_texture(render_ctx, texture_key, || {
        general_texture_creation_desc_from_image(debug_name, image, ColorModel::L, datatype)
    })
    .map_err(|err| anyhow::anyhow!("{err}"))?;

    Ok(ColormappedTexture {
        texture: main_texture_handle,
        range: [0.0, (colormap_width * colormap_height) as f32],
        decode_srgb: false, // Setting this to true would affect the class ids, not the color they resolve to.
        multiply_rgb_with_alpha: false, // already premultiplied!
        gamma: 1.0,
        color_mapper: ColorMapper::Texture(colormap_texture_handle),
        shader_decoding: None,
    })
}

/// Uploads the image to a texture in a format that closely resembled the input.
/// Uses no `Unorm/Snorm` formats.
fn general_texture_creation_desc_from_image<'a>(
    debug_name: &str,
    image: &'a ImageInfo,
    color_model: ColorModel,
    datatype: ChannelDatatype,
) -> ImageDataDesc<'a> {
    re_tracing::profile_function!();

    let buf: &[u8] = image.buffer.as_ref();

    let (data, format) = match color_model {
        ColorModel::L => {
            match datatype {
                ChannelDatatype::U8 => (Cow::Borrowed(buf), TextureFormat::R8Uint),
                ChannelDatatype::U16 => (Cow::Borrowed(buf), TextureFormat::R16Uint),
                ChannelDatatype::U32 => (Cow::Borrowed(buf), TextureFormat::R32Uint),
                ChannelDatatype::U64 => (
                    // wgpu doesn't support u64 textures
                    narrow_u64_to_f32s(&image.to_slice()),
                    TextureFormat::R32Float,
                ),

                ChannelDatatype::I8 => (Cow::Borrowed(buf), TextureFormat::R8Sint),
                ChannelDatatype::I16 => (Cow::Borrowed(buf), TextureFormat::R16Sint),
                ChannelDatatype::I32 => (Cow::Borrowed(buf), TextureFormat::R32Sint),
                ChannelDatatype::I64 => (
                    // wgpu doesn't support i64 textures
                    narrow_i64_to_f32s(&image.to_slice()),
                    TextureFormat::R32Float,
                ),

                ChannelDatatype::F16 => (Cow::Borrowed(buf), TextureFormat::R16Float),
                ChannelDatatype::F32 => (Cow::Borrowed(buf), TextureFormat::R32Float),
                ChannelDatatype::F64 => (
                    // wgpu doesn't support f64 textures
                    narrow_f64_to_f32s(&image.to_slice()),
                    TextureFormat::R32Float,
                ),
            }
        }

        // BGR->RGB conversion is done in the shader.
        ColorModel::RGB | ColorModel::BGR => {
            // There are no 3-channel textures in wgpu, so we need to pad to 4 channels.
            // What should we pad with? It depends on whether or not the shader interprets these as alpha.
            // To be safe, we pad with the MAX value of integers, and with 1.0 for floats.
            // TODO(emilk): tell the shader to ignore the alpha channel instead!

            match datatype {
                ChannelDatatype::U8 => (
                    pad_rgb_to_rgba(buf, u8::MAX).into(),
                    TextureFormat::Rgba8Uint,
                ),
                ChannelDatatype::U16 => (pad_cast_img(image, u16::MAX), TextureFormat::Rgba16Uint),
                ChannelDatatype::U32 => (pad_cast_img(image, u32::MAX), TextureFormat::Rgba32Uint),
                ChannelDatatype::U64 => (
                    pad_and_narrow_and_cast(&image.to_slice(), 1.0, |x: u64| x as f32),
                    TextureFormat::Rgba32Float,
                ),

                ChannelDatatype::I8 => (pad_cast_img(image, i8::MAX), TextureFormat::Rgba8Sint),
                ChannelDatatype::I16 => (pad_cast_img(image, i16::MAX), TextureFormat::Rgba16Sint),
                ChannelDatatype::I32 => (pad_cast_img(image, i32::MAX), TextureFormat::Rgba32Sint),
                ChannelDatatype::I64 => (
                    pad_and_narrow_and_cast(&image.to_slice(), 1.0, |x: i64| x as f32),
                    TextureFormat::Rgba32Float,
                ),

                ChannelDatatype::F16 => (
                    pad_cast_img(image, half::f16::from_f32(1.0)),
                    TextureFormat::Rgba16Float,
                ),
                ChannelDatatype::F32 => (pad_cast_img(image, 1.0_f32), TextureFormat::Rgba32Float),
                ChannelDatatype::F64 => (
                    pad_and_narrow_and_cast(&image.to_slice(), 1.0, |x: f64| x as f32),
                    TextureFormat::Rgba32Float,
                ),
            }
        }

        // BGR->RGB conversion is done in the shader.
        ColorModel::RGBA | ColorModel::BGRA => {
            // TODO(emilk): premultiply alpha, or tell the shader to assume unmultiplied alpha

            match datatype {
                ChannelDatatype::U8 => (Cow::Borrowed(buf), TextureFormat::Rgba8Uint),
                ChannelDatatype::U16 => (Cow::Borrowed(buf), TextureFormat::Rgba16Uint),
                ChannelDatatype::U32 => (Cow::Borrowed(buf), TextureFormat::Rgba32Uint),
                ChannelDatatype::U64 => (
                    // wgpu doesn't support u64 textures
                    narrow_u64_to_f32s(&image.to_slice()),
                    TextureFormat::Rgba32Float,
                ),

                ChannelDatatype::I8 => (Cow::Borrowed(buf), TextureFormat::Rgba8Sint),
                ChannelDatatype::I16 => (Cow::Borrowed(buf), TextureFormat::Rgba16Sint),
                ChannelDatatype::I32 => (Cow::Borrowed(buf), TextureFormat::Rgba32Sint),
                ChannelDatatype::I64 => (
                    // wgpu doesn't support i64 textures
                    narrow_i64_to_f32s(&image.to_slice()),
                    TextureFormat::Rgba32Float,
                ),

                ChannelDatatype::F16 => (Cow::Borrowed(buf), TextureFormat::Rgba16Float),
                ChannelDatatype::F32 => (Cow::Borrowed(buf), TextureFormat::Rgba32Float),
                ChannelDatatype::F64 => (
                    // wgpu doesn't support f64 textures
                    narrow_f64_to_f32s(&image.to_slice()),
                    TextureFormat::Rgba32Float,
                ),
            }
        }
    };

    ImageDataDesc {
        label: debug_name.into(),
        data,
        format: SourceImageDataFormat::WgpuCompatible(format),
        width_height: image.width_height(),
    }
}

fn cast_slice_to_cow<From: bytemuck::Pod>(slice: &[From]) -> Cow<'_, [u8]> {
    bytemuck::cast_slice(slice).into()
}

// wgpu doesn't support u64 textures, so we need to narrow to f32:
fn narrow_u64_to_f32s(slice: &[u64]) -> Cow<'static, [u8]> {
    re_tracing::profile_function!();
    let bytes: Vec<u8> = slice
        .iter()
        .flat_map(|&f| (f as f32).to_le_bytes())
        .collect();
    bytes.into()
}

// wgpu doesn't support i64 textures, so we need to narrow to f32:
fn narrow_i64_to_f32s(slice: &[i64]) -> Cow<'static, [u8]> {
    re_tracing::profile_function!();
    let bytes: Vec<u8> = slice
        .iter()
        .flat_map(|&f| (f as f32).to_le_bytes())
        .collect();
    bytes.into()
}

// wgpu doesn't support f64 textures, so we need to narrow to f32:
fn narrow_f64_to_f32s(slice: &[f64]) -> Cow<'static, [u8]> {
    re_tracing::profile_function!();
    let bytes: Vec<u8> = slice
        .iter()
        .flat_map(|&f| (f as f32).to_le_bytes())
        .collect();
    bytes.into()
}

/// Pad an RGB image to RGBA and cast the results to bytes.
fn pad_and_cast<T: Copy + bytemuck::Pod>(data: &[T], pad: T) -> Cow<'static, [u8]> {
    re_tracing::profile_function!();
    // TODO(emilk): optimize by combining the two steps into one; avoiding one allocation and memcpy
    let padded: Vec<T> = pad_rgb_to_rgba(data, pad);
    let bytes: Vec<u8> = bytemuck::pod_collect_to_vec(&padded);
    bytes.into()
}

/// Pad an RGB image to RGBA and cast the results to bytes.
fn pad_cast_img<T: Copy + bytemuck::Pod>(img: &ImageInfo, pad: T) -> Cow<'static, [u8]> {
    pad_and_cast(&img.to_slice(), pad)
}

fn pad_and_narrow_and_cast<T: Copy + bytemuck::Pod>(
    data: &[T],
    pad: f32,
    narrow: impl Fn(T) -> f32,
) -> Cow<'static, [u8]> {
    re_tracing::profile_function!();

    let floats: Vec<f32> = data
        .chunks_exact(3)
        .flat_map(|chunk| [narrow(chunk[0]), narrow(chunk[1]), narrow(chunk[2]), pad])
        .collect();
    bytemuck::pod_collect_to_vec(&floats).into()
}