1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
#![allow(clippy::needless_pass_by_value)] // A lot of arguments to #[pyfunction] need to be by value
#![allow(clippy::borrow_deref_ref)] // False positive due to #[pyfunction] macro
#![allow(unsafe_op_in_unsafe_fn)] // False positive due to #[pyfunction] macro

use std::{
    collections::{BTreeMap, BTreeSet},
    str::FromStr as _,
};

use arrow::{
    array::{make_array, ArrayData, Int64Array, RecordBatchIterator, RecordBatchReader},
    pyarrow::PyArrowType,
};
use numpy::PyArrayMethods as _;
use pyo3::{
    exceptions::{PyRuntimeError, PyTypeError, PyValueError},
    prelude::*,
    types::{PyDict, PyTuple},
};

use re_arrow_util::ArrowArrayDowncastRef as _;
use re_chunk_store::{
    ChunkStore, ChunkStoreConfig, ChunkStoreHandle, ColumnDescriptor, ColumnSelector,
    ComponentColumnDescriptor, ComponentColumnSelector, QueryExpression, SparseFillStrategy,
    TimeColumnDescriptor, TimeColumnSelector, ViewContentsSelector,
};
use re_dataframe::{QueryEngine, StorageEngine};
use re_log_encoding::VersionPolicy;
use re_log_types::{EntityPathFilter, ResolvedTimeRange, TimeType};
use re_sdk::{ComponentName, EntityPath, StoreId, StoreKind};

#[cfg(feature = "remote")]
use crate::remote::PyRemoteRecording;

/// Register the `rerun.dataframe` module.
pub(crate) fn register(m: &Bound<'_, PyModule>) -> PyResult<()> {
    m.add_class::<PySchema>()?;

    m.add_class::<PyRRDArchive>()?;
    m.add_class::<PyRecording>()?;
    m.add_class::<PyIndexColumnDescriptor>()?;
    m.add_class::<PyIndexColumnSelector>()?;
    m.add_class::<PyComponentColumnDescriptor>()?;
    m.add_class::<PyComponentColumnSelector>()?;
    m.add_class::<PyRecordingView>()?;

    m.add_function(wrap_pyfunction!(crate::dataframe::load_archive, m)?)?;
    m.add_function(wrap_pyfunction!(crate::dataframe::load_recording, m)?)?;

    Ok(())
}

fn py_rerun_warn(msg: &str) -> PyResult<()> {
    Python::with_gil(|py| {
        let warning_type = PyModule::import_bound(py, "rerun")?
            .getattr("error_utils")?
            .getattr("RerunWarning")?;
        PyErr::warn_bound(py, &warning_type, msg, 0)?;
        Ok(())
    })
}

/// The descriptor of an index column.
///
/// Index columns contain the index values for when the data was updated. They
/// generally correspond to Rerun timelines.
///
/// Column descriptors are used to describe the columns in a
/// [`Schema`][rerun.dataframe.Schema]. They are read-only. To select an index
/// column, use [`IndexColumnSelector`][rerun.dataframe.IndexColumnSelector].
#[pyclass(frozen, name = "IndexColumnDescriptor")]
#[derive(Clone)]
struct PyIndexColumnDescriptor(TimeColumnDescriptor);

#[pymethods]
impl PyIndexColumnDescriptor {
    fn __repr__(&self) -> String {
        format!("Index(timeline:{})", self.0.name())
    }

    /// The name of the index.
    ///
    /// This property is read-only.
    #[getter]
    fn name(&self) -> &str {
        self.0.name()
    }

    /// Part of generic ColumnDescriptor interface: always False for Index.
    #[allow(clippy::unused_self)]
    #[getter]
    fn is_static(&self) -> bool {
        false
    }
}

impl From<TimeColumnDescriptor> for PyIndexColumnDescriptor {
    fn from(desc: TimeColumnDescriptor) -> Self {
        Self(desc)
    }
}

/// A selector for an index column.
///
/// Index columns contain the index values for when the data was updated. They
/// generally correspond to Rerun timelines.
///
/// Parameters
/// ----------
/// index : str
///     The name of the index to select. Usually the name of a timeline.
#[pyclass(frozen, name = "IndexColumnSelector")]
#[derive(Clone)]
pub struct PyIndexColumnSelector(TimeColumnSelector);

#[pymethods]
impl PyIndexColumnSelector {
    /// Create a new `IndexColumnSelector`.
    // Note: the `Parameters` section goes into the class docstring.
    #[new]
    #[pyo3(text_signature = "(self, index)")]
    fn new(index: &str) -> Self {
        Self(TimeColumnSelector {
            timeline: index.into(),
        })
    }

    fn __repr__(&self) -> String {
        format!("Index(timeline:{})", self.0.timeline)
    }

    /// The name of the index.
    ///
    /// This property is read-only.
    #[getter]
    fn name(&self) -> &str {
        &self.0.timeline
    }
}

impl From<PyIndexColumnSelector> for TimeColumnSelector {
    fn from(selector: PyIndexColumnSelector) -> Self {
        selector.0
    }
}

/// The descriptor of a component column.
///
/// Component columns contain the data for a specific component of an entity.
///
/// Column descriptors are used to describe the columns in a
/// [`Schema`][rerun.dataframe.Schema]. They are read-only. To select a component
/// column, use [`ComponentColumnSelector`][rerun.dataframe.ComponentColumnSelector].
#[pyclass(frozen, name = "ComponentColumnDescriptor")]
#[derive(Clone)]
pub struct PyComponentColumnDescriptor(ComponentColumnDescriptor);

impl From<ComponentColumnDescriptor> for PyComponentColumnDescriptor {
    fn from(desc: ComponentColumnDescriptor) -> Self {
        Self(desc)
    }
}

#[pymethods]
impl PyComponentColumnDescriptor {
    fn __repr__(&self) -> String {
        format!(
            "Component({}:{})",
            self.0.entity_path,
            self.0.component_name.short_name()
        )
    }

    fn __eq__(&self, other: &Self) -> bool {
        self.0 == other.0
    }

    /// The entity path.
    ///
    /// This property is read-only.
    #[getter]
    fn entity_path(&self) -> String {
        self.0.entity_path.to_string()
    }

    /// The component name.
    ///
    /// This property is read-only.
    #[getter]
    fn component_name(&self) -> &str {
        &self.0.component_name
    }

    /// Whether the column is static.
    ///
    /// This property is read-only.
    #[getter]
    fn is_static(&self) -> bool {
        self.0.is_static
    }
}

impl From<PyComponentColumnDescriptor> for ComponentColumnDescriptor {
    fn from(desc: PyComponentColumnDescriptor) -> Self {
        desc.0
    }
}

/// A selector for a component column.
///
/// Component columns contain the data for a specific component of an entity.
///
/// Parameters
/// ----------
/// entity_path : str
///     The entity path to select.
/// component : ComponentLike
///     The component to select
#[pyclass(frozen, name = "ComponentColumnSelector")]
#[derive(Clone)]
pub struct PyComponentColumnSelector(ComponentColumnSelector);

#[pymethods]
impl PyComponentColumnSelector {
    /// Create a new `ComponentColumnSelector`.
    // Note: the `Parameters` section goes into the class docstring.
    #[new]
    #[pyo3(text_signature = "(self, entity_path: str, component: ComponentLike)")]
    fn new(entity_path: &str, component_name: ComponentLike) -> Self {
        Self(ComponentColumnSelector {
            entity_path: entity_path.into(),
            component_name: component_name.0,
        })
    }

    fn __repr__(&self) -> String {
        format!(
            "Component({}:{})",
            self.0.entity_path, self.0.component_name
        )
    }

    /// The entity path.
    ///
    /// This property is read-only.
    #[getter]
    fn entity_path(&self) -> String {
        self.0.entity_path.to_string()
    }

    /// The component name.
    ///
    /// This property is read-only.
    #[getter]
    fn component_name(&self) -> &str {
        &self.0.component_name
    }
}

impl From<PyComponentColumnSelector> for ComponentColumnSelector {
    fn from(selector: PyComponentColumnSelector) -> Self {
        selector.0
    }
}

/// A type alias for any component-column-like object.
#[derive(FromPyObject)]
enum AnyColumn {
    #[pyo3(transparent, annotation = "name")]
    Name(String),
    #[pyo3(transparent, annotation = "index_descriptor")]
    IndexDescriptor(PyIndexColumnDescriptor),
    #[pyo3(transparent, annotation = "index_selector")]
    IndexSelector(PyIndexColumnSelector),
    #[pyo3(transparent, annotation = "component_descriptor")]
    ComponentDescriptor(PyComponentColumnDescriptor),
    #[pyo3(transparent, annotation = "component_selector")]
    ComponentSelector(PyComponentColumnSelector),
}

impl AnyColumn {
    fn into_selector(self) -> PyResult<ColumnSelector> {
        match self {
            Self::Name(name) => {
                if !name.contains(':') && !name.contains('/') {
                    Ok(ColumnSelector::Time(TimeColumnSelector {
                        timeline: name.into(),
                    }))
                } else {
                    let component_path =
                        re_log_types::ComponentPath::from_str(&name).map_err(|err| {
                            PyValueError::new_err(format!("Invalid component path {name:?}: {err}"))
                        })?;

                    Ok(ColumnSelector::Component(ComponentColumnSelector {
                        entity_path: component_path.entity_path,
                        component_name: component_path.component_name.to_string(),
                    }))
                }
            }
            Self::IndexDescriptor(desc) => Ok(ColumnDescriptor::Time(desc.0).into()),
            Self::IndexSelector(selector) => Ok(selector.0.into()),
            Self::ComponentDescriptor(desc) => Ok(ColumnDescriptor::Component(desc.0).into()),
            Self::ComponentSelector(selector) => Ok(selector.0.into()),
        }
    }
}

/// A type alias for any component-column-like object.
#[derive(FromPyObject)]
enum AnyComponentColumn {
    #[pyo3(transparent, annotation = "name")]
    Name(String),
    #[pyo3(transparent, annotation = "component_descriptor")]
    ComponentDescriptor(PyComponentColumnDescriptor),
    #[pyo3(transparent, annotation = "component_selector")]
    ComponentSelector(PyComponentColumnSelector),
}

impl AnyComponentColumn {
    #[allow(dead_code)]
    fn into_selector(self) -> PyResult<ComponentColumnSelector> {
        match self {
            Self::Name(name) => {
                let component_path =
                    re_log_types::ComponentPath::from_str(&name).map_err(|err| {
                        PyValueError::new_err(format!("Invalid component path '{name}': {err}"))
                    })?;

                Ok(ComponentColumnSelector {
                    entity_path: component_path.entity_path,
                    component_name: component_path.component_name.to_string(),
                })
            }
            Self::ComponentDescriptor(desc) => Ok(desc.0.into()),
            Self::ComponentSelector(selector) => Ok(selector.0),
        }
    }
}

/// A type alias for index values.
///
/// This can be any numpy-compatible array of integers, or a [`pa.Int64Array`][]
#[derive(FromPyObject)]
enum IndexValuesLike<'py> {
    PyArrow(PyArrowType<ArrayData>),
    NumPy(numpy::PyArrayLike1<'py, i64>),

    // Catch all to support ChunkedArray and other types
    #[pyo3(transparent)]
    CatchAll(Bound<'py, PyAny>),
}

impl IndexValuesLike<'_> {
    fn to_index_values(&self) -> PyResult<BTreeSet<re_chunk_store::TimeInt>> {
        match self {
            Self::PyArrow(array) => {
                let array = make_array(array.0.clone());

                let int_array = array.downcast_array_ref::<Int64Array>().ok_or_else(|| {
                    PyTypeError::new_err("pyarrow.Array for IndexValuesLike must be of type int64.")
                })?;

                let values: BTreeSet<re_chunk_store::TimeInt> = int_array
                    .iter()
                    .map(|v| {
                        v.map_or_else(
                            || re_chunk_store::TimeInt::STATIC,
                            // The use of temporal here should be fine even if the data is
                            // not actually temporal. The important thing is we are converting
                            // from an i64 input
                            re_chunk_store::TimeInt::new_temporal,
                        )
                    })
                    .collect();

                if values.len() != int_array.len() {
                    return Err(PyValueError::new_err("Index values must be unique."));
                }

                Ok(values)
            }
            Self::NumPy(array) => {
                let values: BTreeSet<re_chunk_store::TimeInt> = array
                    .readonly()
                    .as_array()
                    .iter()
                    // The use of temporal here should be fine even if the data is
                    // not actually temporal. The important thing is we are converting
                    // from an i64 input
                    .map(|v| re_chunk_store::TimeInt::new_temporal(*v))
                    .collect();

                if values.len() != array.len()? {
                    return Err(PyValueError::new_err("Index values must be unique."));
                }

                Ok(values)
            }
            Self::CatchAll(any) => {
                // If any has the `.chunks` attribute, we can try to try each chunk as pyarrow array
                if let Ok(chunks) = any.getattr("chunks") {
                    let mut values = BTreeSet::new();
                    for chunk in chunks.iter()? {
                        let chunk = chunk?.extract::<PyArrowType<ArrayData>>()?;
                        let array = make_array(chunk.0.clone());

                        let int_array =
                            array.downcast_array_ref::<Int64Array>().ok_or_else(|| {
                                PyTypeError::new_err(
                                    "pyarrow.Array for IndexValuesLike must be of type int64.",
                                )
                            })?;

                        values.extend(
                            int_array
                                .iter()
                                .map(|v| {
                                    v.map_or_else(
                                        || re_chunk_store::TimeInt::STATIC,
                                        // The use of temporal here should be fine even if the data is
                                        // not actually temporal. The important thing is we are converting
                                        // from an i64 input
                                        re_chunk_store::TimeInt::new_temporal,
                                    )
                                })
                                .collect::<BTreeSet<_>>(),
                        );
                    }

                    if values.len() != any.len()? {
                        return Err(PyValueError::new_err("Index values must be unique."));
                    }

                    Ok(values)
                } else {
                    Err(PyTypeError::new_err(
                        "IndexValuesLike must be a pyarrow.Array, pyarrow.ChunkedArray, or numpy.ndarray",
                    ))
                }
            }
        }
    }
}

pub struct ComponentLike(pub String);

impl FromPyObject<'_> for ComponentLike {
    fn extract_bound(component: &Bound<'_, PyAny>) -> PyResult<Self> {
        if let Ok(component_str) = component.extract::<String>() {
            Ok(Self(component_str))
        } else if let Ok(component_str) = component
            .getattr("_BATCH_TYPE")
            .and_then(|batch_type| batch_type.getattr("_COMPONENT_DESCRIPTOR"))
            .and_then(|descr| descr.getattr("component_name")?.extract::<String>())
        {
            Ok(Self(component_str))
        } else {
            return Err(PyTypeError::new_err(
                "ComponentLike input must be a string or Component class.",
            ));
        }
    }
}

#[pyclass]
pub struct SchemaIterator {
    iter: std::vec::IntoIter<PyObject>,
}

#[pymethods]
impl SchemaIterator {
    fn __iter__(slf: PyRef<'_, Self>) -> PyRef<'_, Self> {
        slf
    }

    fn __next__(mut slf: PyRefMut<'_, Self>) -> Option<PyObject> {
        slf.iter.next()
    }
}

#[pyclass(frozen, name = "Schema")]
#[derive(Clone)]
pub struct PySchema {
    pub schema: Vec<ColumnDescriptor>,
}

/// The schema representing a set of available columns.
///
/// Can be returned by [`Recording.schema()`][rerun.dataframe.Recording.schema] or
/// [`RecordingView.schema()`][rerun.dataframe.RecordingView.schema].
#[pymethods]
impl PySchema {
    /// Iterate over all the column descriptors in the schema.
    fn __iter__(slf: PyRef<'_, Self>) -> PyResult<Py<SchemaIterator>> {
        let py = slf.py();
        let iter = SchemaIterator {
            iter: slf
                .schema
                .clone()
                .into_iter()
                .map(|col| match col {
                    ColumnDescriptor::Time(col) => PyIndexColumnDescriptor(col).into_py(py),
                    ColumnDescriptor::Component(col) => {
                        PyComponentColumnDescriptor(col).into_py(py)
                    }
                })
                .collect::<Vec<PyObject>>()
                .into_iter(),
        };
        Py::new(slf.py(), iter)
    }

    /// Return a list of all the index columns in the schema.
    fn index_columns(&self) -> Vec<PyIndexColumnDescriptor> {
        self.schema
            .iter()
            .filter_map(|column| {
                if let ColumnDescriptor::Time(col) = column {
                    Some(col.clone().into())
                } else {
                    None
                }
            })
            .collect()
    }

    /// Return a list of all the component columns in the schema.
    fn component_columns(&self) -> Vec<PyComponentColumnDescriptor> {
        self.schema
            .iter()
            .filter_map(|column| {
                if let ColumnDescriptor::Component(col) = column {
                    Some(col.clone().into())
                } else {
                    None
                }
            })
            .collect()
    }

    /// Look up the column descriptor for a specific entity path and component.
    ///
    /// Parameters
    /// ----------
    /// entity_path : str
    ///     The entity path to look up.
    /// component : ComponentLike
    ///     The component to look up.
    ///
    /// Returns
    /// -------
    /// Optional[ComponentColumnDescriptor]
    ///     The column descriptor, if it exists.
    fn column_for(
        &self,
        entity_path: &str,
        component: ComponentLike,
    ) -> Option<PyComponentColumnDescriptor> {
        let entity_path: EntityPath = entity_path.into();

        self.schema.iter().find_map(|col| {
            if let ColumnDescriptor::Component(col) = col {
                if col.matches(&entity_path, &component.0) {
                    return Some(col.clone().into());
                }
            }
            None
        })
    }
}

/// A single Rerun recording.
///
/// This can be loaded from an RRD file using [`load_recording()`][rerun.dataframe.load_recording].
///
/// A recording is a collection of data that was logged to Rerun. This data is organized
/// as a column for each index (timeline) and each entity/component pair that was logged.
///
/// You can examine the [`.schema()`][rerun.dataframe.Recording.schema] of the recording to see
/// what data is available, or create a [`RecordingView`][rerun.dataframe.RecordingView] to
/// to retrieve the data.
#[pyclass(name = "Recording")]
pub struct PyRecording {
    pub(crate) store: ChunkStoreHandle,
    pub(crate) cache: re_dataframe::QueryCacheHandle,
}

#[derive(Clone)]
pub enum PyRecordingHandle {
    Local(std::sync::Arc<Py<PyRecording>>),
    #[cfg(feature = "remote")]
    Remote(std::sync::Arc<Py<PyRemoteRecording>>),
}

/// A view of a recording restricted to a given index, containing a specific set of entities and components.
///
/// See [`Recording.view(…)`][rerun.dataframe.Recording.view] for details on how to create a `RecordingView`.
///
/// Note: `RecordingView` APIs never mutate the underlying view. Instead, they
/// always return new views with the requested modifications applied.
///
/// The view will only contain a single row for each unique value of the index
/// that is associated with a component column that was included in the view.
/// Component columns that are not included via the view contents will not
/// impact the rows that make up the view. If the same entity / component pair
/// was logged to a given index multiple times, only the most recent row will be
/// included in the view, as determined by the `row_id` column. This will
/// generally be the last value logged, as row_ids are guaranteed to be
/// monotonically increasing when data is sent from a single process.
#[pyclass(name = "RecordingView")]
#[derive(Clone)]
pub struct PyRecordingView {
    pub(crate) recording: PyRecordingHandle,

    pub(crate) query_expression: QueryExpression,
}

impl PyRecordingView {
    fn select_args(
        args: &Bound<'_, PyTuple>,
        columns: Option<Vec<AnyColumn>>,
    ) -> PyResult<Option<Vec<ColumnSelector>>> {
        // Coerce the arguments into a list of `ColumnSelector`s
        let args: Vec<AnyColumn> = args
            .iter()
            .map(|arg| arg.extract::<AnyColumn>())
            .collect::<PyResult<_>>()?;

        if columns.is_some() && !args.is_empty() {
            return Err(PyValueError::new_err(
                "Cannot specify both `columns` and `args` in `select`.",
            ));
        }

        let columns = columns.or(if !args.is_empty() { Some(args) } else { None });

        columns
            .map(|cols| {
                cols.into_iter()
                    .map(|col| col.into_selector())
                    .collect::<PyResult<_>>()
            })
            .transpose()
    }
}

/// A view of a recording restricted to a given index, containing a specific set of entities and components.
///
/// Can only be created by calling `view(...)` on a `Recording`.
///
/// The only type of index currently supported is the name of a timeline.
///
/// The view will only contain a single row for each unique value of the index. If the same entity / component pair
/// was logged to a given index multiple times, only the most recent row will be included in the view, as determined
/// by the `row_id` column. This will generally be the last value logged, as row_ids are guaranteed to be monotonically
/// increasing when data is sent from a single process.
#[pymethods]
impl PyRecordingView {
    /// The schema describing all the columns available in the view.
    ///
    /// This schema will only contain the columns that are included in the view via
    /// the view contents.
    fn schema(&self, py: Python<'_>) -> PyResult<PySchema> {
        #![allow(clippy::unnecessary_wraps)] // In case of feature != "remote"
        match &self.recording {
            PyRecordingHandle::Local(recording) => {
                let borrowed: PyRef<'_, PyRecording> = recording.borrow(py);
                let engine = borrowed.engine();

                let mut query_expression = self.query_expression.clone();
                query_expression.selection = None;

                let query_handle = engine.query(query_expression);

                let contents = query_handle.view_contents();

                Ok(PySchema {
                    schema: contents.to_vec(),
                })
            }
            #[cfg(feature = "remote")]
            PyRecordingHandle::Remote(_) => Err::<_, PyErr>(PyRuntimeError::new_err(
                "Schema is not implemented for remote recordings yet.",
            )),
        }
    }

    /// Select the columns from the view.
    ///
    /// If no columns are provided, all available columns will be included in
    /// the output.
    ///
    /// The selected columns do not change the rows that are included in the
    /// view. The rows are determined by the index values and the components
    /// that were included in the view contents, or can be overridden with
    /// [`.using_index_values()`][rerun.dataframe.RecordingView.using_index_values].
    ///
    /// If a column was not provided with data for a given row, it will be
    /// `null` in the output.
    ///
    /// The output is a [`pyarrow.RecordBatchReader`][] that can be used to read
    /// out the data.
    ///
    /// Parameters
    /// ----------
    /// *args : AnyColumn
    ///     The columns to select.
    /// columns : Optional[Sequence[AnyColumn]], optional
    ///     Alternatively the columns to select can be provided as a sequence.
    ///
    /// Returns
    /// -------
    /// pa.RecordBatchReader
    ///     A reader that can be used to read out the selected data.
    #[pyo3(signature = (
        *args,
        columns = None
    ))]
    fn select(
        &self,
        py: Python<'_>,
        args: &Bound<'_, PyTuple>,
        columns: Option<Vec<AnyColumn>>,
    ) -> PyResult<PyArrowType<Box<dyn RecordBatchReader + Send>>> {
        let mut query_expression = self.query_expression.clone();
        query_expression.selection = Self::select_args(args, columns)?;

        match &self.recording {
            PyRecordingHandle::Local(recording) => {
                let borrowed = recording.borrow(py);
                let engine = borrowed.engine();

                let query_handle = engine.query(query_expression);

                // If the only contents found are static, we might need to warn the user since
                // this means we won't naturally have any rows in the result.
                let available_data_columns = query_handle
                    .view_contents()
                    .iter()
                    .filter(|c| matches!(c, ColumnDescriptor::Component(_)))
                    .collect::<Vec<_>>();

                // We only consider all contents static if there at least some columns
                let all_contents_are_static = !available_data_columns.is_empty()
                    && available_data_columns.iter().all(|c| c.is_static());

                // Additionally, we only want to warn if the user actually tried to select some
                // of the static columns. Otherwise the fact that there are no results shouldn't
                // be surprising.
                let selected_data_columns = query_handle
                    .selected_contents()
                    .iter()
                    .map(|(_, col)| col)
                    .filter(|c| matches!(c, ColumnDescriptor::Component(_)))
                    .collect::<Vec<_>>();

                let any_selected_data_is_static =
                    selected_data_columns.iter().any(|c| c.is_static());

                if self.query_expression.using_index_values.is_none()
                    && all_contents_are_static
                    && any_selected_data_is_static
                {
                    py_rerun_warn("RecordingView::select: tried to select static data, but no non-static contents generated an index value on this timeline. No results will be returned. Either include non-static data or consider using `select_static()` instead.")?;
                }

                let schema = query_handle.schema().clone();

                let reader =
                    RecordBatchIterator::new(query_handle.into_batch_iter().map(Ok), schema);
                Ok(PyArrowType(Box::new(reader)))
            }
            #[cfg(feature = "remote")]
            PyRecordingHandle::Remote(recording) => {
                let borrowed_recording = recording.borrow(py);
                let mut borrowed_client = borrowed_recording.client.borrow_mut(py);
                borrowed_client.exec_query(
                    borrowed_recording.store_info.store_id.clone(),
                    query_expression,
                )
            }
        }
    }

    /// Select only the static columns from the view.
    ///
    /// Because static data has no associated index values it does not cause a
    /// row to be generated in the output. If your view only contains static data
    /// this method allows you to select it without needing to provide index values.
    ///
    /// This method will always return a single row.
    ///
    /// Any non-static columns that are included in the selection will generate a warning
    /// and produce empty columns.
    ///
    ///
    /// Parameters
    /// ----------
    /// *args : AnyColumn
    ///     The columns to select.
    /// columns : Optional[Sequence[AnyColumn]], optional
    ///     Alternatively the columns to select can be provided as a sequence.
    ///
    /// Returns
    /// -------
    /// pa.RecordBatchReader
    ///     A reader that can be used to read out the selected data.
    #[pyo3(signature = (
        *args,
        columns = None
    ))]
    fn select_static(
        &self,
        py: Python<'_>,
        args: &Bound<'_, PyTuple>,
        columns: Option<Vec<AnyColumn>>,
    ) -> PyResult<PyArrowType<Box<dyn RecordBatchReader + Send>>> {
        let mut query_expression = self.query_expression.clone();
        // This is a static selection, so we clear the filtered index
        query_expression.filtered_index = None;

        // If no columns provided, select all static columns
        let static_columns = Self::select_args(args, columns)
            .transpose()
            .unwrap_or_else(|| {
                Ok(self
                    .schema(py)?
                    .schema
                    .iter()
                    .filter(|col| col.is_static())
                    .map(|col| col.clone().into())
                    .collect())
            })?;

        query_expression.selection = Some(static_columns);

        match &self.recording {
            PyRecordingHandle::Local(recording) => {
                let borrowed = recording.borrow(py);
                let engine = borrowed.engine();

                let query_handle = engine.query(query_expression);

                let non_static_cols = query_handle
                    .selected_contents()
                    .iter()
                    .filter(|(_, col)| !col.is_static())
                    .collect::<Vec<_>>();

                if !non_static_cols.is_empty() {
                    return Err(PyValueError::new_err(format!(
                        "Static selection resulted in non-static columns: {non_static_cols:?}",
                    )));
                }

                let schema = query_handle.schema().clone();

                let reader =
                    RecordBatchIterator::new(query_handle.into_batch_iter().map(Ok), schema);

                Ok(PyArrowType(Box::new(reader)))
            }
            #[cfg(feature = "remote")]
            PyRecordingHandle::Remote(recording) => {
                let borrowed_recording = recording.borrow(py);
                let mut borrowed_client = borrowed_recording.client.borrow_mut(py);
                borrowed_client.exec_query(
                    borrowed_recording.store_info.store_id.clone(),
                    query_expression,
                )
            }
        }
    }

    #[allow(rustdoc::private_doc_tests)]
    /// Filter the view to only include data between the given index sequence numbers.
    ///
    /// This range is inclusive and will contain both the value at the start and the value at the end.
    ///
    /// The view must be of a sequential index type to use this method.
    ///
    /// Parameters
    /// ----------
    /// start : int
    ///     The inclusive start of the range.
    /// end : int
    ///     The inclusive end of the range.
    ///
    /// Returns
    /// -------
    /// RecordingView
    ///     A new view containing only the data within the specified range.
    ///
    ///     The original view will not be modified.
    fn filter_range_sequence(&self, start: i64, end: i64) -> PyResult<Self> {
        match self.query_expression.filtered_index.as_ref() {
            Some(filtered_index) if filtered_index.typ() != TimeType::Sequence => {
                return Err(PyValueError::new_err(format!(
                    "Index for {} is not a sequence.",
                    filtered_index.name()
                )));
            }

            Some(_) => {}

            None => {
                return Err(PyValueError::new_err(
                    "Specify an index to filter on first.".to_owned(),
                ));
            }
        }

        let start = if let Ok(seq) = re_chunk::TimeInt::try_from(start) {
            seq
        } else {
            re_log::error!(
                illegal_value = start,
                new_value = re_chunk::TimeInt::MIN.as_i64(),
                "set_time_sequence() called with illegal value - clamped to minimum legal value"
            );
            re_chunk::TimeInt::MIN
        };

        let end = if let Ok(seq) = re_chunk::TimeInt::try_from(end) {
            seq
        } else {
            re_log::error!(
                illegal_value = end,
                new_value = re_chunk::TimeInt::MAX.as_i64(),
                "set_time_sequence() called with illegal value - clamped to maximum legal value"
            );
            re_chunk::TimeInt::MAX
        };

        let resolved = ResolvedTimeRange::new(start, end);

        let mut query_expression = self.query_expression.clone();
        query_expression.filtered_index_range = Some(resolved);

        Ok(Self {
            recording: self.recording.clone(),
            query_expression,
        })
    }

    #[allow(rustdoc::private_doc_tests)]
    /// Filter the view to only include data between the given index values expressed as seconds.
    ///
    /// This range is inclusive and will contain both the value at the start and the value at the end.
    ///
    /// The view must be of a temporal index type to use this method.
    ///
    /// Parameters
    /// ----------
    /// start : int
    ///     The inclusive start of the range.
    /// end : int
    ///     The inclusive end of the range.
    ///
    /// Returns
    /// -------
    /// RecordingView
    ///     A new view containing only the data within the specified range.
    ///
    ///     The original view will not be modified.
    fn filter_range_seconds(&self, start: f64, end: f64) -> PyResult<Self> {
        match self.query_expression.filtered_index.as_ref() {
            Some(filtered_index) if filtered_index.typ() != TimeType::Time => {
                return Err(PyValueError::new_err(format!(
                    "Index for {} is not temporal.",
                    filtered_index.name()
                )));
            }

            Some(_) => {}

            None => {
                return Err(PyValueError::new_err(
                    "Specify an index to filter on first.".to_owned(),
                ));
            }
        }

        let start = re_sdk::Time::from_seconds_since_epoch(start);
        let end = re_sdk::Time::from_seconds_since_epoch(end);

        let resolved = ResolvedTimeRange::new(start, end);

        let mut query_expression = self.query_expression.clone();
        query_expression.filtered_index_range = Some(resolved);

        Ok(Self {
            recording: self.recording.clone(),
            query_expression,
        })
    }

    #[allow(rustdoc::private_doc_tests)]
    /// Filter the view to only include data between the given index values expressed as seconds.
    ///
    /// This range is inclusive and will contain both the value at the start and the value at the end.
    ///
    /// The view must be of a temporal index type to use this method.
    ///
    /// Parameters
    /// ----------
    /// start : int
    ///     The inclusive start of the range.
    /// end : int
    ///     The inclusive end of the range.
    ///
    /// Returns
    /// -------
    /// RecordingView
    ///     A new view containing only the data within the specified range.
    ///
    ///     The original view will not be modified.
    fn filter_range_nanos(&self, start: i64, end: i64) -> PyResult<Self> {
        match self.query_expression.filtered_index.as_ref() {
            Some(filtered_index) if filtered_index.typ() != TimeType::Time => {
                return Err(PyValueError::new_err(format!(
                    "Index for {} is not temporal.",
                    filtered_index.name()
                )));
            }

            Some(_) => {}

            None => {
                return Err(PyValueError::new_err(
                    "Specify an index to filter on first.".to_owned(),
                ));
            }
        }

        let start = re_sdk::Time::from_ns_since_epoch(start);
        let end = re_sdk::Time::from_ns_since_epoch(end);

        let resolved = ResolvedTimeRange::new(start, end);

        let mut query_expression = self.query_expression.clone();
        query_expression.filtered_index_range = Some(resolved);

        Ok(Self {
            recording: self.recording.clone(),
            query_expression,
        })
    }

    #[allow(rustdoc::private_doc_tests)]
    /// Filter the view to only include data at the provided index values.
    ///
    /// The index values returned will be the intersection between the provided values and the
    /// original index values.
    ///
    /// This requires index values to be a precise match. Index values in Rerun are
    /// represented as i64 sequence counts or nanoseconds. This API does not expose an interface
    /// in floating point seconds, as the numerical conversion would risk false mismatches.
    ///
    /// Parameters
    /// ----------
    /// values : IndexValuesLike
    ///     The index values to filter by.
    ///
    /// Returns
    /// -------
    /// RecordingView
    ///     A new view containing only the data at the specified index values.
    ///
    ///     The original view will not be modified.
    fn filter_index_values(&self, values: IndexValuesLike<'_>) -> PyResult<Self> {
        let values = values.to_index_values()?;

        let mut query_expression = self.query_expression.clone();
        query_expression.filtered_index_values = Some(values);

        Ok(Self {
            recording: self.recording.clone(),
            query_expression,
        })
    }

    #[allow(rustdoc::private_doc_tests)]
    /// Filter the view to only include rows where the given component column is not null.
    ///
    /// This corresponds to rows for index values where this component was provided to Rerun explicitly
    /// via `.log()` or `.send_columns()`.
    ///
    /// Parameters
    /// ----------
    /// column : AnyComponentColumn
    ///     The component column to filter by.
    ///
    /// Returns
    /// -------
    /// RecordingView
    ///     A new view containing only the data where the specified component column is not null.
    ///
    ///     The original view will not be modified.
    fn filter_is_not_null(&self, column: AnyComponentColumn) -> PyResult<Self> {
        let column = column.into_selector();

        let mut query_expression = self.query_expression.clone();
        query_expression.filtered_is_not_null = Some(column?);

        Ok(Self {
            recording: self.recording.clone(),
            query_expression,
        })
    }

    #[allow(rustdoc::private_doc_tests)]
    /// Replace the index in the view with the provided values.
    ///
    /// The output view will always have the same number of rows as the provided values, even if
    /// those rows are empty. Use with [`.fill_latest_at()`][rerun.dataframe.RecordingView.fill_latest_at]
    /// to populate these rows with the most recent data.
    ///
    /// This requires index values to be a precise match. Index values in Rerun are
    /// represented as i64 sequence counts or nanoseconds. This API does not expose an interface
    /// in floating point seconds, as the numerical conversion would risk false mismatches.
    ///
    /// Parameters
    /// ----------
    /// values : IndexValuesLike
    ///     The index values to use.
    ///
    /// Returns
    /// -------
    /// RecordingView
    ///     A new view containing the provided index values.
    ///
    ///     The original view will not be modified.
    fn using_index_values(&self, values: IndexValuesLike<'_>) -> PyResult<Self> {
        let values = values.to_index_values()?;

        let mut query_expression = self.query_expression.clone();
        query_expression.using_index_values = Some(values);

        Ok(Self {
            recording: self.recording.clone(),
            query_expression,
        })
    }

    #[allow(rustdoc::private_doc_tests)]
    /// Populate any null values in a row with the latest valid data according to the index.
    ///
    /// Returns
    /// -------
    /// RecordingView
    ///     A new view with the null values filled in.
    ///
    ///     The original view will not be modified.
    fn fill_latest_at(&self) -> Self {
        let mut query_expression = self.query_expression.clone();
        query_expression.sparse_fill_strategy = SparseFillStrategy::LatestAtGlobal;

        Self {
            recording: self.recording.clone(),
            query_expression,
        }
    }
}

impl PyRecording {
    fn engine(&self) -> QueryEngine<StorageEngine> {
        // Safety: this is all happening in the context of a python client using the dataframe API,
        // there is no reason to worry about handle leakage whatsoever.
        #[allow(unsafe_code)]
        let engine = unsafe { StorageEngine::new(self.store.clone(), self.cache.clone()) };

        QueryEngine { engine }
    }

    fn find_best_component(&self, entity_path: &EntityPath, component_name: &str) -> ComponentName {
        let selector = ComponentColumnSelector {
            entity_path: entity_path.clone(),
            component_name: component_name.into(),
        };

        self.store
            .read()
            .resolve_component_selector(&selector)
            .component_name
    }

    /// Convert a `ViewContentsLike` into a `ViewContentsSelector`.
    ///
    /// ```python
    /// ViewContentsLike = Union[str, Dict[str, Union[ComponentLike, Sequence[ComponentLike]]]]
    /// ```
    ///
    /// We cant do this with the normal `FromPyObject` mechanisms because we want access to the
    /// `QueryEngine` to resolve the entity paths.
    fn extract_contents_expr(
        &self,
        expr: Bound<'_, PyAny>,
    ) -> PyResult<re_chunk_store::ViewContentsSelector> {
        let engine = self.engine();

        if let Ok(expr) = expr.extract::<String>() {
            // `str`

            let path_filter =
                EntityPathFilter::parse_strict(&expr)
                    .map_err(|err| {
                        PyValueError::new_err(format!(
                            "Could not interpret `contents` as a ViewContentsLike. Failed to parse {expr}: {err}.",
                        ))
                    })?;

            let contents = engine
                .iter_entity_paths_sorted(&path_filter)
                .map(|p| (p, None))
                .collect();

            Ok(contents)
        } else if let Ok(dict) = expr.downcast::<PyDict>() {
            // `Union[ComponentLike, Sequence[ComponentLike]]]`

            let mut contents = ViewContentsSelector::default();

            for (key, value) in dict {
                let key = key.extract::<String>().map_err(|_err| {
                    PyTypeError::new_err(
                        format!("Could not interpret `contents` as a ViewContentsLike. Key: {key} is not a path expression."),
                    )
                })?;

                let path_filter = EntityPathFilter::parse_strict(&key).map_err(|err| {
                    PyValueError::new_err(format!(
                        "Could not interpret `contents` as a ViewContentsLike. Failed to parse {key}: {err}.",
                    ))
                })?;

                let component_strs: BTreeSet<String> = if let Ok(component) =
                    value.extract::<ComponentLike>()
                {
                    std::iter::once(component.0).collect()
                } else if let Ok(components) = value.extract::<Vec<ComponentLike>>() {
                    components.into_iter().map(|c| c.0).collect()
                } else {
                    return Err(PyTypeError::new_err(
                            format!("Could not interpret `contents` as a ViewContentsLike. Value: {value} is not a ComponentLike or Sequence[ComponentLike]."),
                        ));
                };

                contents.append(
                    &mut engine
                        .iter_entity_paths_sorted(&path_filter)
                        .map(|entity_path| {
                            let components = component_strs
                                .iter()
                                .map(|component_name| {
                                    self.find_best_component(&entity_path, component_name)
                                })
                                .collect();
                            (entity_path, Some(components))
                        })
                        .collect(),
                );
            }

            Ok(contents)
        } else {
            return Err(PyTypeError::new_err(
                "Could not interpret `contents` as a ViewContentsLike. Top-level type must be a string or a dictionary.",
            ));
        }
    }
}

#[pymethods]
impl PyRecording {
    /// The schema describing all the columns available in the recording.
    fn schema(&self) -> PySchema {
        PySchema {
            schema: self.store.read().schema(),
        }
    }

    #[allow(rustdoc::private_doc_tests, rustdoc::invalid_rust_codeblocks)]
    /// Create a [`RecordingView`][rerun.dataframe.RecordingView] of the recording according to a particular index and content specification.
    ///
    /// The only type of index currently supported is the name of a timeline.
    ///
    /// The view will only contain a single row for each unique value of the index
    /// that is associated with a component column that was included in the view.
    /// Component columns that are not included via the view contents will not
    /// impact the rows that make up the view. If the same entity / component pair
    /// was logged to a given index multiple times, only the most recent row will be
    /// included in the view, as determined by the `row_id` column. This will
    /// generally be the last value logged, as row_ids are guaranteed to be
    /// monotonically increasing when data is sent from a single process.
    ///
    /// Parameters
    /// ----------
    /// index : str
    ///     The index to use for the view. This is typically a timeline name.
    /// contents : ViewContentsLike
    ///     The content specification for the view.
    ///
    ///     This can be a single string content-expression such as: `"world/cameras/**"`, or a dictionary
    ///     specifying multiple content-expressions and a respective list of components to select within
    ///     that expression such as `{"world/cameras/**": ["ImageBuffer", "PinholeProjection"]}`.
    /// include_semantically_empty_columns : bool, optional
    ///     Whether to include columns that are semantically empty, by default `False`.
    ///
    ///     Semantically empty columns are components that are `null` or empty `[]` for every row in the recording.
    /// include_indicator_columns : bool, optional
    ///     Whether to include indicator columns, by default `False`.
    ///
    ///     Indicator columns are components used to represent the presence of an archetype within an entity.
    /// include_tombstone_columns : bool, optional
    ///     Whether to include tombstone columns, by default `False`.
    ///
    ///     Tombstone columns are components used to represent clears. However, even without the clear
    ///     tombstone columns, the view will still apply the clear semantics when resolving row contents.
    ///
    /// Returns
    /// -------
    /// RecordingView
    ///     The view of the recording.
    ///
    /// Examples
    /// --------
    /// All the data in the recording on the timeline "my_index":
    /// ```python
    /// recording.view(index="my_index", contents="/**")
    /// ```
    ///
    /// Just the Position3D components in the "points" entity:
    /// ```python
    /// recording.view(index="my_index", contents={"points": "Position3D"})
    /// ```
    #[allow(clippy::fn_params_excessive_bools)]
    #[pyo3(signature = (
        *,
        index,
        contents,
        include_semantically_empty_columns = false,
        include_indicator_columns = false,
        include_tombstone_columns = false,
    ))]
    fn view(
        slf: Bound<'_, Self>,
        index: &str,
        contents: Bound<'_, PyAny>,
        include_semantically_empty_columns: bool,
        include_indicator_columns: bool,
        include_tombstone_columns: bool,
    ) -> PyResult<PyRecordingView> {
        let borrowed_self = slf.borrow();

        // Look up the type of the timeline
        let selector = TimeColumnSelector {
            timeline: index.into(),
        };

        let timeline = borrowed_self.store.read().resolve_time_selector(&selector);

        let contents = borrowed_self.extract_contents_expr(contents)?;

        let query = QueryExpression {
            view_contents: Some(contents),
            include_semantically_empty_columns,
            include_indicator_columns,
            include_tombstone_columns,
            filtered_index: Some(timeline.timeline()),
            filtered_index_range: None,
            filtered_index_values: None,
            using_index_values: None,
            filtered_is_not_null: None,
            sparse_fill_strategy: SparseFillStrategy::None,
            selection: None,
        };

        let recording = slf.unbind();

        Ok(PyRecordingView {
            recording: PyRecordingHandle::Local(std::sync::Arc::new(recording)),
            query_expression: query,
        })
    }

    /// The recording ID of the recording.
    fn recording_id(&self) -> String {
        self.store.read().id().as_str().to_owned()
    }

    /// The application ID of the recording.
    fn application_id(&self) -> PyResult<String> {
        Ok(self
            .store
            .read()
            .info()
            .ok_or(PyValueError::new_err(
                "Recording is missing application id.",
            ))?
            .application_id
            .as_str()
            .to_owned())
    }
}

/// An archive loaded from an RRD.
///
/// RRD archives may include 1 or more recordings or blueprints.
#[pyclass(frozen, name = "RRDArchive")]
#[derive(Clone)]
pub struct PyRRDArchive {
    pub datasets: BTreeMap<StoreId, ChunkStoreHandle>,
}

#[pymethods]
impl PyRRDArchive {
    /// The number of recordings in the archive.
    fn num_recordings(&self) -> usize {
        self.datasets
            .iter()
            .filter(|(id, _)| matches!(id.kind, StoreKind::Recording))
            .count()
    }

    /// All the recordings in the archive.
    // TODO(jleibs): This should return an iterator
    fn all_recordings(&self) -> Vec<PyRecording> {
        self.datasets
            .iter()
            .filter(|(id, _)| matches!(id.kind, StoreKind::Recording))
            .map(|(_, store)| {
                let cache = re_dataframe::QueryCacheHandle::new(re_dataframe::QueryCache::new(
                    store.clone(),
                ));
                PyRecording {
                    store: store.clone(),
                    cache,
                }
            })
            .collect()
    }
}

/// Load a single recording from an RRD file.
///
/// Will raise a `ValueError` if the file does not contain exactly one recording.
///
/// Parameters
/// ----------
/// path_to_rrd : str | os.PathLike
///     The path to the file to load.
///
/// Returns
/// -------
/// Recording
///     The loaded recording.
#[pyfunction]
pub fn load_recording(path_to_rrd: std::path::PathBuf) -> PyResult<PyRecording> {
    let archive = load_archive(path_to_rrd)?;

    let num_recordings = archive.num_recordings();

    if num_recordings != 1 {
        return Err(PyValueError::new_err(format!(
            "Expected exactly one recording in the archive, but found {num_recordings}",
        )));
    }

    if let Some(recording) = archive.all_recordings().into_iter().next() {
        Ok(recording)
    } else {
        Err(PyValueError::new_err(
            "Expected exactly one recording in the archive, but found none.",
        ))
    }
}

/// Load a rerun archive from an RRD file.
///
/// Parameters
/// ----------
/// path_to_rrd : str | os.PathLike
///     The path to the file to load.
///
/// Returns
/// -------
/// RRDArchive
///     The loaded archive.
#[pyfunction]
pub fn load_archive(path_to_rrd: std::path::PathBuf) -> PyResult<PyRRDArchive> {
    let stores =
        ChunkStore::from_rrd_filepath(&ChunkStoreConfig::DEFAULT, path_to_rrd, VersionPolicy::Warn)
            .map_err(|err| PyRuntimeError::new_err(err.to_string()))?
            .into_iter()
            .map(|(store_id, store)| (store_id, ChunkStoreHandle::new(store)))
            .collect();

    let archive = PyRRDArchive { datasets: stores };

    Ok(archive)
}