1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
#![allow(clippy::needless_pass_by_value)] // A lot of arguments to #[pyfunction] need to be by value
#![allow(unsafe_op_in_unsafe_fn)] // False positive due to #[pyfunction] macro

use std::{collections::BTreeSet, sync::Arc};

use arrow::{
    array::{Float32Array, RecordBatch, RecordBatchIterator, RecordBatchReader, StringArray},
    datatypes::{Field, Schema as ArrowSchema},
    ffi_stream::ArrowArrayStreamReader,
    pyarrow::PyArrowType,
};
use pyo3::{
    exceptions::{PyRuntimeError, PyTypeError, PyValueError},
    prelude::*,
    types::PyDict,
    Bound, PyResult,
};
use tokio_stream::StreamExt;

use re_arrow_util::ArrowArrayDowncastRef as _;
use re_chunk::Chunk;
use re_chunk_store::ChunkStore;
use re_dataframe::{
    ChunkStoreHandle, ComponentColumnSelector, QueryExpression, SparseFillStrategy,
    TimeColumnSelector, ViewContentsSelector,
};
use re_grpc_client::TonicStatusError;
use re_log_encoding::codec::wire::{decoder::Decode, encoder::Encode};
use re_log_types::{EntityPathFilter, StoreInfo, StoreSource};
use re_protos::{
    common::v0::{EntityPath, IndexColumnSelector, RecordingId},
    remote_store::v0::{
        index_properties::Props, storage_node_client::StorageNodeClient, CatalogEntry,
        CatalogFilter, ColumnProjection, FetchRecordingRequest, GetRecordingSchemaRequest,
        IndexColumn, QueryCatalogRequest, QueryRequest, RecordingType, RegisterRecordingRequest,
        SearchIndexRequest, UpdateCatalogRequest, VectorIvfPqIndex,
    },
};
use re_sdk::{ApplicationId, ComponentName, StoreId, StoreKind, Time, Timeline};

use crate::dataframe::{
    ComponentLike, PyComponentColumnSelector, PyIndexColumnSelector, PyRecording,
    PyRecordingHandle, PyRecordingView, PySchema,
};

/// Register the `rerun.remote` module.
pub(crate) fn register(m: &Bound<'_, PyModule>) -> PyResult<()> {
    m.add_class::<PyStorageNodeClient>()?;
    m.add_class::<PyVectorDistanceMetric>()?;

    m.add_function(wrap_pyfunction!(connect, m)?)?;

    Ok(())
}

async fn connect_async(addr: String) -> PyResult<StorageNodeClient<tonic::transport::Channel>> {
    #[cfg(not(target_arch = "wasm32"))]
    let tonic_client = tonic::transport::Endpoint::new(addr)
        .map_err(|err| PyRuntimeError::new_err(err.to_string()))?
        .connect()
        .await
        .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

    Ok(StorageNodeClient::new(tonic_client))
}

/// Load a rerun archive from an RRD file.
///
/// Required-feature: `remote`
///
/// Parameters
/// ----------
/// addr : str
///     The address of the storage node to connect to.
///
/// Returns
/// -------
/// StorageNodeClient
///     The connected client.
#[pyfunction]
pub fn connect(addr: String) -> PyResult<PyStorageNodeClient> {
    let runtime = tokio::runtime::Builder::new_current_thread()
        .enable_all()
        .build()?;

    let client = runtime.block_on(connect_async(addr))?;

    Ok(PyStorageNodeClient { runtime, client })
}

/// A connection to a remote storage node.
#[pyclass(name = "StorageNodeClient")]
pub struct PyStorageNodeClient {
    /// A tokio runtime for async operations. This connection will currently
    /// block the Python interpreter while waiting for responses.
    /// This runtime must be persisted for the lifetime of the connection.
    runtime: tokio::runtime::Runtime,

    /// The actual tonic connection.
    client: StorageNodeClient<tonic::transport::Channel>,
}

impl PyStorageNodeClient {
    /// Get the [`StoreInfo`] for a single recording in the storage node.
    fn get_store_info(&mut self, id: &str) -> PyResult<StoreInfo> {
        let store_info = self
            .runtime
            .block_on(async {
                let resp = self
                    .client
                    .query_catalog(QueryCatalogRequest {
                        column_projection: None, // fetch all columns
                        filter: Some(CatalogFilter {
                            recording_ids: vec![RecordingId { id: id.to_owned() }],
                        }),
                    })
                    .await
                    .map_err(re_grpc_client::TonicStatusError)?
                    .into_inner()
                    .map(|resp| {
                        resp.and_then(|r| {
                            r.decode()
                                .map_err(|err| tonic::Status::internal(err.to_string()))
                        })
                    })
                    .collect::<Result<Vec<_>, tonic::Status>>()
                    .await
                    .map_err(re_grpc_client::TonicStatusError)?;

                if resp.len() != 1 || resp[0].num_rows() != 1 {
                    return Err(re_grpc_client::StreamError::ChunkError(
                        re_chunk::ChunkError::Malformed {
                            reason: format!(
                                "expected exactly one recording with id {id}, got {}",
                                resp.len()
                            ),
                        },
                    ));
                }

                re_grpc_client::store_info_from_catalog_chunk(
                    &re_chunk::TransportChunk::from(resp[0].clone()),
                    id,
                )
            })
            .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

        Ok(store_info)
    }

    /// Execute a [`QueryExpression`] for a single recording in the storage node.
    pub(crate) fn exec_query(
        &mut self,
        id: StoreId,
        query: QueryExpression,
    ) -> PyResult<PyArrowType<Box<dyn RecordBatchReader + Send>>> {
        let query: re_protos::common::v0::Query = query.into();

        let batches = self.runtime.block_on(async {
            // TODO(#8536): Avoid the need to collect here.
            // This means we shouldn't be blocking on
            let batches = self
                .client
                .query(QueryRequest {
                    recording_id: Some(id.into()),
                    query: Some(query.clone()),
                })
                .await
                .map_err(TonicStatusError)?
                .into_inner()
                .map(|resp| {
                    resp.and_then(|r| {
                        r.decode()
                            .map_err(|err| tonic::Status::internal(err.to_string()))
                    })
                })
                .collect::<Result<Vec<_>, tonic::Status>>()
                .await
                .map_err(TonicStatusError)?;

            let schema = batches
                .first()
                .map(|batch| batch.schema())
                .unwrap_or_else(|| ArrowSchema::empty().into());

            Ok(RecordBatchIterator::new(
                batches.into_iter().map(Ok),
                schema,
            ))
        });

        let result =
            batches.map_err(|err: TonicStatusError| PyRuntimeError::new_err(err.to_string()))?;

        Ok(PyArrowType(Box::new(result)))
    }
}

#[pymethods]
impl PyStorageNodeClient {
    /// Get the metadata for recordings in the storage node.
    ///
    /// Parameters
    /// ----------
    /// columns : Optional[list[str]]
    ///     The columns to fetch. If `None`, fetch all columns.
    /// recording_ids : Optional[list[str]]
    ///     Fetch metadata of only specific recordings. If `None`, fetch for all.
    #[pyo3(signature = (
        columns = None,
        recording_ids = None,
    ))]
    fn query_catalog(
        &mut self,
        columns: Option<Vec<String>>,
        recording_ids: Option<Vec<String>>,
    ) -> PyResult<PyArrowType<Box<dyn RecordBatchReader + Send>>> {
        let reader = self.runtime.block_on(async {
            let column_projection = columns.map(|columns| ColumnProjection { columns });
            let filter = recording_ids.map(|recording_ids| CatalogFilter {
                recording_ids: recording_ids
                    .into_iter()
                    .map(|id| RecordingId { id })
                    .collect(),
            });
            let request = QueryCatalogRequest {
                column_projection,
                filter,
            };

            let transport_chunks = self
                .client
                .query_catalog(request)
                .await
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?
                .into_inner()
                .map(|resp| {
                    resp.and_then(|r| {
                        r.decode()
                            .map_err(|err| tonic::Status::internal(err.to_string()))
                    })
                })
                .collect::<Result<Vec<_>, _>>()
                .await
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

            let record_batches: Vec<Result<RecordBatch, arrow::error::ArrowError>> =
                transport_chunks.into_iter().map(Ok).collect();

            // TODO(jleibs): surfacing this schema is awkward. This should be more explicit in
            // the gRPC APIs somehow.
            let schema = record_batches
                .first()
                .and_then(|batch| batch.as_ref().ok().map(|batch| batch.schema()))
                .unwrap_or(std::sync::Arc::new(ArrowSchema::empty()));

            let reader = RecordBatchIterator::new(record_batches, schema);

            Ok::<_, PyErr>(reader)
        })?;

        Ok(PyArrowType(Box::new(reader)))
    }

    #[pyo3(signature = (id,))]
    /// Get the schema for a recording in the storage node.
    ///
    /// Parameters
    /// ----------
    /// id : str
    ///     The id of the recording to get the schema for.
    ///
    /// Returns
    /// -------
    /// Schema
    ///     The schema of the recording.
    fn get_recording_schema(&mut self, id: String) -> PyResult<PySchema> {
        self.runtime.block_on(async {
            let request = GetRecordingSchemaRequest {
                recording_id: Some(RecordingId { id }),
            };

            let schema = self
                .client
                .get_recording_schema(request)
                .await
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?
                .into_inner()
                .schema
                .ok_or_else(|| PyRuntimeError::new_err("Missing shcema"))?;

            let arrow_schema = ArrowSchema::try_from(&schema)
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

            let column_descriptors =
                re_sorbet::ColumnDescriptor::from_arrow_fields(&arrow_schema.fields)
                    .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

            Ok(PySchema {
                schema: column_descriptors,
            })
        })
    }

    /// Register a recording along with some metadata.
    ///
    /// Parameters
    /// ----------
    /// storage_url : str
    ///     The URL to the storage location.
    /// metadata : Optional[Table | RecordBatch]
    ///     A pyarrow Table or RecordBatch containing the metadata to update.
    ///     This Table must contain only a single row.
    #[pyo3(signature = (
        storage_url,
        metadata = None
    ))]
    fn register(&mut self, storage_url: &str, metadata: Option<MetadataLike>) -> PyResult<String> {
        self.runtime.block_on(async {
            let storage_url = url::Url::parse(storage_url)
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

            let _obj = object_store::ObjectStoreScheme::parse(&storage_url)
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

            let metadata = metadata
                .map(|metadata| {
                    let metadata = metadata.into_record_batch()?;

                    if metadata.num_rows() != 1 {
                        return Err(PyRuntimeError::new_err(
                            "Metadata must contain exactly one row",
                        ));
                    }

                    metadata
                        .encode()
                        .map_err(|err| PyRuntimeError::new_err(err.to_string()))
                })
                .transpose()?;

            let request = RegisterRecordingRequest {
                // TODO(jleibs): Description should really just be in the metadata
                description: Default::default(),
                storage_url: storage_url.to_string(),
                metadata,
                typ: RecordingType::Rrd.into(),
            };

            let resp = self
                .client
                .register_recording(request)
                .await
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?
                .into_inner();
            let metadata = resp
                .decode()
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

            let recording_id = metadata
                .column_by_name("rerun_recording_id")
                .ok_or(PyRuntimeError::new_err("No rerun_recording_id"))?
                .downcast_array_ref::<arrow::array::StringArray>()
                .ok_or(PyRuntimeError::new_err("Recording Id is not a string"))?
                .value(0)
                .to_owned();

            Ok(recording_id)
        })
    }

    /// Create a vector index.
    ///
    /// Parameters
    /// ----------
    /// entry : str
    ///     The name of the catalog entry to index.
    /// column : ComponentColumnSelector
    ///     The component column to index.
    /// time_index : IndexColumnSelector
    ///     The index column to use for the time index.
    /// num_partitions : int
    ///     The number of partitions for the index.
    /// num_sub_vectors : int
    ///     The number of sub-vectors for the index.
    /// distance_metric : VectorDistanceMetric
    ///     The distance metric to use for the index.
    #[pyo3(signature = (
        entry,
        column,
        time_index,
        num_partitions,
        num_sub_vectors,
        distance_metric
    ))]
    fn create_vector_index(
        &mut self,
        entry: String,
        column: PyComponentColumnSelector,
        time_index: PyIndexColumnSelector,
        num_partitions: u32,
        num_sub_vectors: u32,
        distance_metric: VectorDistanceMetricLike,
    ) -> PyResult<()> {
        self.runtime.block_on(async {
            let time_selector: TimeColumnSelector = time_index.into();
            let column_selector: ComponentColumnSelector = column.into();
            let distance_metric: re_protos::remote_store::v0::VectorDistanceMetric =
                distance_metric.try_into()?;

            let index_column = IndexColumn {
                entity_path: Some(EntityPath {
                    path: column_selector.entity_path.to_string(),
                }),
                archetype_name: None,
                archetype_field_name: None,
                component_name: column_selector.component_name,
            };

            let time_index = IndexColumnSelector {
                timeline: Some(re_protos::common::v0::Timeline {
                    name: time_selector.timeline.to_string(),
                }),
            };

            self.client
                .create_index(re_protos::remote_store::v0::CreateIndexRequest {
                    entry: Some(CatalogEntry { name: entry }),
                    properties: Some(re_protos::remote_store::v0::IndexProperties {
                        props: Some(Props::Vector(VectorIvfPqIndex {
                            num_partitions,
                            num_sub_vectors,
                            distance_metrics: distance_metric.into(),
                        })),
                    }),
                    column: Some(index_column),
                    time_index: Some(time_index),
                })
                .await
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

            Ok(())
        })
    }

    /// Create a full-text-search index.
    ///
    /// Parameters
    /// ----------
    /// entry : str
    ///     The name of the catalog entry to index.
    /// column : ComponentColumnSelector
    ///     The component column to index.
    /// time_index : IndexColumnSelector
    ///     The index column to use for the time index.
    /// store_position : bool
    ///     Whether to store the position of the token in the document.
    /// base_tokenizer : str
    ///     The base tokenizer to use.
    #[pyo3(signature = (
        entry,
        column,
        time_index,
        store_position,
        base_tokenizer
    ))]
    fn create_fts_index(
        &mut self,
        entry: String,
        column: PyComponentColumnSelector,
        time_index: PyIndexColumnSelector,
        store_position: bool,
        base_tokenizer: &str,
    ) -> PyResult<()> {
        self.runtime.block_on(async {
            let time_selector: TimeColumnSelector = time_index.into();
            let column_selector: ComponentColumnSelector = column.into();

            let index_column = IndexColumn {
                entity_path: Some(EntityPath {
                    path: column_selector.entity_path.to_string(),
                }),
                archetype_name: None,
                archetype_field_name: None,
                component_name: column_selector.component_name,
            };

            let time_index = IndexColumnSelector {
                timeline: Some(re_protos::common::v0::Timeline {
                    name: time_selector.timeline.to_string(),
                }),
            };

            self.client
                .create_index(re_protos::remote_store::v0::CreateIndexRequest {
                    entry: Some(CatalogEntry { name: entry }),
                    properties: Some(re_protos::remote_store::v0::IndexProperties {
                        props: Some(Props::Inverted(
                            re_protos::remote_store::v0::InvertedIndex {
                                store_position,
                                base_tokenizer: base_tokenizer.to_owned(),
                            },
                        )),
                    }),
                    column: Some(index_column),
                    time_index: Some(time_index),
                })
                .await
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

            Ok(())
        })
    }

    /// Search over a vector index.
    ///
    /// Parameters
    /// ----------
    /// entry : str
    ///     The name of the catalog entry to search.
    /// query : VectorLike
    ///     The input to search for.
    /// column : ComponentColumnSelector
    ///     The component column to search over.
    /// top_k : int
    ///     The number of results to return.
    ///
    /// Returns
    /// -------
    /// pa.RecordBatchReader
    ///     The results of the query.
    #[pyo3(signature = (
            entry,
            query,
            column,
            top_k,
        ))]
    fn search_vector_index(
        &mut self,
        entry: String,
        query: VectorLike<'_>,
        column: PyComponentColumnSelector,
        top_k: u32,
    ) -> PyResult<PyArrowType<Box<dyn RecordBatchReader + Send>>> {
        let reader = self.runtime.block_on(async {
            let column_selector: ComponentColumnSelector = column.into();
            let query = query.to_record_batch()?;

            let transport_chunks = self
                .client
                .search_index(SearchIndexRequest {
                    entry: Some(CatalogEntry { name: entry }),
                    column: Some(IndexColumn {
                        entity_path: Some(EntityPath {
                            path: column_selector.entity_path.to_string(),
                        }),
                        archetype_name: None,
                        archetype_field_name: None,
                        component_name: column_selector.component_name,
                    }),
                    properties: Some(re_protos::remote_store::v0::IndexQueryProperties {
                        props: Some(
                            re_protos::remote_store::v0::index_query_properties::Props::Vector(
                                re_protos::remote_store::v0::VectorIndexQuery { top_k },
                            ),
                        ),
                    }),
                    query: Some(
                        query
                            .encode()
                            .map_err(|err| PyRuntimeError::new_err(err.to_string()))?,
                    ),
                    limit: None,
                })
                .await
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?
                .into_inner()
                .map(|resp| {
                    resp.and_then(|r| {
                        r.decode()
                            .map_err(|err| tonic::Status::internal(err.to_string()))
                    })
                })
                .collect::<Result<Vec<_>, _>>()
                .await
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

            let record_batches: Vec<Result<RecordBatch, arrow::error::ArrowError>> =
                transport_chunks.into_iter().map(Ok).collect();

            // TODO(jleibs): surfacing this schema is awkward. This should be more explicit in
            // the gRPC APIs somehow.
            let schema = record_batches
                .first()
                .and_then(|batch| batch.as_ref().ok().map(|batch| batch.schema()))
                .unwrap_or(std::sync::Arc::new(ArrowSchema::empty()));

            let reader = RecordBatchIterator::new(record_batches, schema);

            Ok::<_, PyErr>(reader)
        })?;

        Ok(PyArrowType(Box::new(reader)))
    }

    /// Search over a full-text-search index.
    ///
    /// Parameters
    /// ----------
    /// entry : str
    ///     The name of the catalog entry to search.
    /// query : str
    ///     The input to search for.
    /// column : ComponentColumnSelector
    ///     The component column to search over.
    /// limit : Optional[int]
    ///     The maximum number of results to return.
    ///
    /// Returns
    /// -------
    /// pa.RecordBatchReader
    ///     The results of the query.
    #[allow(rustdoc::broken_intra_doc_links)]
    #[pyo3(signature = (
        entry,
        query,
        column,
        limit = None
    ))]
    fn search_fts_index(
        &mut self,
        entry: String,
        query: String,
        column: PyComponentColumnSelector,
        limit: Option<u32>,
    ) -> PyResult<PyArrowType<Box<dyn RecordBatchReader + Send>>> {
        let reader = self.runtime.block_on(async {
            let column_selector: ComponentColumnSelector = column.into();

            let schema = arrow::datatypes::Schema::new_with_metadata(
                vec![Field::new("items", arrow::datatypes::DataType::Utf8, false)],
                Default::default(),
            );

            let query = RecordBatch::try_new(
                Arc::new(schema),
                vec![Arc::new(StringArray::from_iter_values([query]))],
            )
            .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

            let transport_chunks = self
                .client
                .search_index(SearchIndexRequest {
                    entry: Some(CatalogEntry { name: entry }),
                    column: Some(IndexColumn {
                        entity_path: Some(EntityPath {
                            path: column_selector.entity_path.to_string(),
                        }),
                        archetype_name: None,
                        archetype_field_name: None,
                        component_name: column_selector.component_name,
                    }),
                    properties: Some(re_protos::remote_store::v0::IndexQueryProperties {
                        props: Some(
                            re_protos::remote_store::v0::index_query_properties::Props::Inverted(
                                re_protos::remote_store::v0::InvertedIndexQuery {},
                            ),
                        ),
                    }),
                    query: Some(
                        query
                            .encode()
                            .map_err(|err| PyRuntimeError::new_err(err.to_string()))?,
                    ),
                    limit,
                })
                .await
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?
                .into_inner()
                .map(|resp| {
                    resp.and_then(|r| {
                        r.decode()
                            .map_err(|err| tonic::Status::internal(err.to_string()))
                    })
                })
                .collect::<Result<Vec<_>, _>>()
                .await
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

            let record_batches: Vec<Result<RecordBatch, arrow::error::ArrowError>> =
                transport_chunks.into_iter().map(Ok).collect();

            // TODO(jleibs): surfacing this schema is awkward. This should be more explicit in
            // the gRPC APIs somehow.
            let schema = record_batches
                .first()
                .and_then(|batch| batch.as_ref().ok().map(|batch| batch.schema()))
                .unwrap_or(std::sync::Arc::new(ArrowSchema::empty()));

            let reader = RecordBatchIterator::new(record_batches, schema);

            Ok::<_, PyErr>(reader)
        })?;

        Ok(PyArrowType(Box::new(reader)))
    }

    /// Update the catalog metadata for one or more recordings.
    ///
    /// The updates are provided as a pyarrow Table or RecordBatch containing the metadata to update.
    /// The Table must contain an 'id' column, which is used to specify the recording to update for each row.
    ///
    /// Parameters
    /// ----------
    /// metadata : Table | RecordBatch
    ///     A pyarrow Table or RecordBatch containing the metadata to update.
    #[pyo3(signature = (
        metadata
    ))]
    #[allow(clippy::needless_pass_by_value)]
    fn update_catalog(&mut self, metadata: MetadataLike) -> PyResult<()> {
        self.runtime.block_on(async {
            let metadata = metadata.into_record_batch()?;

            // TODO(jleibs): This id name should probably come from `re_protos`
            if metadata
                .schema()
                .column_with_name("rerun_recording_id")
                .is_none()
            {
                return Err(PyRuntimeError::new_err(
                    "Metadata must contain 'rerun_recording_id' column",
                ));
            }

            let request = UpdateCatalogRequest {
                metadata: Some(
                    metadata
                        .encode()
                        .map_err(|err| PyRuntimeError::new_err(err.to_string()))?,
                ),
            };

            self.client
                .update_catalog(request)
                .await
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

            Ok(())
        })
    }

    /// Open a [`Recording`][rerun.dataframe.Recording] by id to use with the dataframe APIs.
    ///
    /// This will run queries against the remote storage node and stream the results. Faster for small
    /// numbers of queries with small results.
    ///
    /// Parameters
    /// ----------
    /// id : str
    ///     The id of the recording to open.
    ///
    /// Returns
    /// -------
    /// Recording
    ///     The opened recording.
    #[pyo3(signature = (
        id,
    ))]
    fn open_recording(slf: Bound<'_, Self>, id: &str) -> PyResult<PyRemoteRecording> {
        let mut borrowed_self = slf.borrow_mut();

        let store_info = borrowed_self.get_store_info(id)?;

        let client = slf.unbind();

        Ok(PyRemoteRecording {
            client: std::sync::Arc::new(client),
            store_info,
        })
    }

    /// Download a [`Recording`][rerun.dataframe.Recording] by id to use with the dataframe APIs.
    ///
    /// This will download the full recording to memory and run queries against a local chunk store.
    ///
    /// Parameters
    /// ----------
    /// id : str
    ///     The id of the recording to open.
    ///
    /// Returns
    /// -------
    /// Recording
    ///     The opened recording.
    #[pyo3(signature = (
        id,
    ))]
    fn download_recording(&mut self, id: &str) -> PyResult<PyRecording> {
        use tokio_stream::StreamExt as _;
        let store = self.runtime.block_on(async {
            let mut resp = self
                .client
                .fetch_recording(FetchRecordingRequest {
                    recording_id: Some(RecordingId { id: id.to_owned() }),
                })
                .await
                .map_err(|err| PyRuntimeError::new_err(err.to_string()))?
                .into_inner();

            // TODO(jleibs): Does this come from RDP?
            let store_id = StoreId::from_string(StoreKind::Recording, id.to_owned());

            let store_info = StoreInfo {
                application_id: ApplicationId::from("rerun_data_platform"),
                store_id: store_id.clone(),
                cloned_from: None,
                is_official_example: false,
                started: Time::now(),
                store_source: StoreSource::Unknown,
                store_version: None,
            };

            let mut store = ChunkStore::new(store_id, Default::default());
            store.set_info(store_info);

            while let Some(result) = resp.next().await {
                let response = result.map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
                let batch = match response.decode() {
                    Ok(tc) => tc,
                    Err(err) => {
                        return Err(PyRuntimeError::new_err(err.to_string()));
                    }
                };
                let chunk = Chunk::from_record_batch(batch)
                    .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;

                store
                    .insert_chunk(&std::sync::Arc::new(chunk))
                    .map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
            }

            Ok(store)
        });

        let handle = ChunkStoreHandle::new(store?);

        let cache =
            re_dataframe::QueryCacheHandle::new(re_dataframe::QueryCache::new(handle.clone()));

        Ok(PyRecording {
            store: handle,
            cache,
        })
    }
}

#[pyclass(name = "VectorDistanceMetric", eq, eq_int)]
#[derive(Clone, Debug, PartialEq)]
enum PyVectorDistanceMetric {
    L2,
    Cosine,
    Dot,
    Hamming,
}

impl From<PyVectorDistanceMetric> for re_protos::remote_store::v0::VectorDistanceMetric {
    fn from(metric: PyVectorDistanceMetric) -> Self {
        match metric {
            PyVectorDistanceMetric::L2 => Self::L2,
            PyVectorDistanceMetric::Cosine => Self::Cosine,
            PyVectorDistanceMetric::Dot => Self::Dot,
            PyVectorDistanceMetric::Hamming => Self::Hamming,
        }
    }
}

/// A type alias for either a `VectorDistanceMetric` enum or a string literal.
#[derive(FromPyObject)]
enum VectorDistanceMetricLike {
    #[pyo3(transparent, annotation = "enum")]
    VectorDistanceMetric(PyVectorDistanceMetric),

    #[pyo3(transparent, annotation = "literal")]
    CatchAll(String),
}

impl TryFrom<VectorDistanceMetricLike> for re_protos::remote_store::v0::VectorDistanceMetric {
    type Error = PyErr;

    fn try_from(metric: VectorDistanceMetricLike) -> Result<Self, PyErr> {
        match metric {
            VectorDistanceMetricLike::VectorDistanceMetric(metric) => Ok(metric.into()),
            VectorDistanceMetricLike::CatchAll(metric) => match metric.to_lowercase().as_str() {
                "l2" => Ok(PyVectorDistanceMetric::L2.into()),
                "cosine" => Ok(PyVectorDistanceMetric::Cosine.into()),
                "dot" => Ok(PyVectorDistanceMetric::Dot.into()),
                "hamming" => Ok(PyVectorDistanceMetric::Hamming.into()),
                _ => Err(PyValueError::new_err(format!(
                    "Unknown vector distance metric: {metric}"
                ))),
            },
        }
    }
}

impl From<PyVectorDistanceMetric> for i32 {
    fn from(metric: PyVectorDistanceMetric) -> Self {
        let proto_typed = re_protos::remote_store::v0::VectorDistanceMetric::from(metric);

        proto_typed as Self
    }
}

/// A type alias for metadata.
#[derive(FromPyObject)]
enum MetadataLike {
    RecordBatch(PyArrowType<RecordBatch>),
    Reader(PyArrowType<ArrowArrayStreamReader>),
}

impl MetadataLike {
    fn into_record_batch(self) -> PyResult<RecordBatch> {
        let (schema, batches) = match self {
            Self::RecordBatch(record_batch) => (record_batch.0.schema(), vec![record_batch.0]),
            Self::Reader(reader) => (
                reader.0.schema(),
                reader.0.collect::<Result<Vec<_>, _>>().map_err(|err| {
                    PyRuntimeError::new_err(format!("Failed to read RecordBatches: {err}"))
                })?,
            ),
        };

        arrow::compute::concat_batches(&schema, &batches)
            .map_err(|err| PyRuntimeError::new_err(err.to_string()))
    }
}

/// A type alias for a vector (vector search input data).
#[derive(FromPyObject)]
enum VectorLike<'py> {
    NumPy(numpy::PyArrayLike1<'py, f32>),
    Vector(Vec<f32>),
}

impl VectorLike<'_> {
    fn to_record_batch(&self) -> PyResult<RecordBatch> {
        let schema = arrow::datatypes::Schema::new_with_metadata(
            vec![Field::new(
                "items",
                arrow::datatypes::DataType::Float32,
                false,
            )],
            Default::default(),
        );

        match self {
            VectorLike::NumPy(array) => {
                let floats: Vec<f32> = array
                    .as_array()
                    .as_slice()
                    .ok_or_else(|| {
                        PyRuntimeError::new_err("Failed to convert numpy array to slice".to_owned())
                    })?
                    .to_vec();

                RecordBatch::try_new(Arc::new(schema), vec![Arc::new(Float32Array::from(floats))])
                    .map_err(|err| {
                        PyRuntimeError::new_err(format!("Failed to create RecordBatches: {err}"))
                    })
            }
            VectorLike::Vector(floats) => RecordBatch::try_new(
                Arc::new(schema),
                vec![Arc::new(Float32Array::from(floats.clone()))],
            )
            .map_err(|err| {
                PyRuntimeError::new_err(format!("Failed to create RecordBatches: {err}"))
            }),
        }
    }
}

/// A single Rerun recording.
///
/// This can be loaded from an RRD file using [`load_recording()`][rerun.dataframe.load_recording].
///
/// A recording is a collection of data that was logged to Rerun. This data is organized
/// as a column for each index (timeline) and each entity/component pair that was logged.
///
/// You can examine the [`.schema()`][rerun.dataframe.Recording.schema] of the recording to see
/// what data is available, or create a [`RecordingView`][rerun.dataframe.RecordingView] to
/// to retrieve the data.
#[pyclass(name = "RemoteRecording")]
pub struct PyRemoteRecording {
    pub(crate) client: std::sync::Arc<Py<PyStorageNodeClient>>,
    pub(crate) store_info: StoreInfo,
}

impl PyRemoteRecording {
    /// Convert a `ViewContentsLike` into a `ViewContentsSelector`.
    ///
    /// ```python
    /// ViewContentsLike = Union[str, Dict[str, Union[ComponentLike, Sequence[ComponentLike]]]]
    /// ```
    ///
    // TODO(jleibs): This needs access to the schema to resolve paths and components
    fn extract_contents_expr(
        expr: &Bound<'_, PyAny>,
    ) -> PyResult<re_chunk_store::ViewContentsSelector> {
        if let Ok(expr) = expr.extract::<String>() {
            let path_filter =
            EntityPathFilter::parse_strict(&expr).map_err(|err| {
                PyValueError::new_err(format!(
                    "Could not interpret `contents` as a ViewContentsLike. Failed to parse {expr}: {err}.",
                ))
            })?;

            for (rule, _) in path_filter.rules() {
                if rule.include_subtree() {
                    return Err(PyValueError::new_err(
                        "SubTree path expressions (/**) are not allowed yet for remote recordings.",
                    ));
                }
            }

            // Since these are all exact rules, just include them directly
            // TODO(jleibs): This needs access to the schema to resolve paths and components
            let contents = path_filter
                .resolve_without_substitutions()
                .rules()
                .map(|(rule, _)| (rule.resolved_path.clone(), None))
                .collect();

            Ok(contents)
        } else if let Ok(dict) = expr.downcast::<PyDict>() {
            // `Union[ComponentLike, Sequence[ComponentLike]]]`

            let mut contents = ViewContentsSelector::default();

            for (key, value) in dict {
                let key = key.extract::<String>().map_err(|_err| {
                    PyTypeError::new_err(
                        format!("Could not interpret `contents` as a ViewContentsLike. Key: {key} is not a path expression."),
                    )
                })?;

                let path_filter = EntityPathFilter::parse_strict(&key).map_err(|err| {
                    PyValueError::new_err(format!(
                        "Could not interpret `contents` as a ViewContentsLike. Failed to parse {key}: {err}.",
                    ))
                })?;

                for (rule, _) in path_filter.rules() {
                    if rule.include_subtree() {
                        return Err(PyValueError::new_err(
                            "SubTree path expressions (/**) are not allowed yet for remote recordings.",
                        ));
                    }
                }

                let component_strs: BTreeSet<String> = if let Ok(component) =
                    value.extract::<ComponentLike>()
                {
                    std::iter::once(component.0).collect()
                } else if let Ok(components) = value.extract::<Vec<ComponentLike>>() {
                    components.into_iter().map(|c| c.0).collect()
                } else {
                    return Err(PyTypeError::new_err(
                            format!("Could not interpret `contents` as a ViewContentsLike. Value: {value} is not a ComponentLike or Sequence[ComponentLike]."),
                        ));
                };

                contents.extend(
                    // TODO(jleibs): This needs access to the schema to resolve paths and components
                    path_filter
                        .resolve_without_substitutions()
                        .rules()
                        .map(|(rule, _)| {
                            let components = component_strs
                                .iter()
                                .map(|component_name| ComponentName::from(component_name.clone()))
                                .collect();
                            (rule.resolved_path.clone(), Some(components))
                        }),
                );
            }

            Ok(contents)
        } else {
            return Err(PyTypeError::new_err(
                "Could not interpret `contents` as a ViewContentsLike. Top-level type must be a string or a dictionary.",
            ));
        }
    }
}

#[pymethods]
impl PyRemoteRecording {
    #[allow(rustdoc::private_doc_tests, rustdoc::invalid_rust_codeblocks)]
    /// Create a [`RecordingView`][rerun.dataframe.RecordingView] of the recording according to a particular index and content specification.
    ///
    /// The only type of index currently supported is the name of a timeline.
    ///
    /// The view will only contain a single row for each unique value of the index
    /// that is associated with a component column that was included in the view.
    /// Component columns that are not included via the view contents will not
    /// impact the rows that make up the view. If the same entity / component pair
    /// was logged to a given index multiple times, only the most recent row will be
    /// included in the view, as determined by the `row_id` column. This will
    /// generally be the last value logged, as row_ids are guaranteed to be
    /// monotonically increasing when data is sent from a single process.
    ///
    /// Parameters
    /// ----------
    /// index : str
    ///     The index to use for the view. This is typically a timeline name.
    /// contents : ViewContentsLike
    ///     The content specification for the view.
    ///
    ///     This can be a single string content-expression such as: `"world/cameras/**"`, or a dictionary
    ///     specifying multiple content-expressions and a respective list of components to select within
    ///     that expression such as `{"world/cameras/**": ["ImageBuffer", "PinholeProjection"]}`.
    /// include_semantically_empty_columns : bool, optional
    ///     Whether to include columns that are semantically empty, by default `False`.
    ///
    ///     Semantically empty columns are components that are `null` or empty `[]` for every row in the recording.
    /// include_indicator_columns : bool, optional
    ///     Whether to include indicator columns, by default `False`.
    ///
    ///     Indicator columns are components used to represent the presence of an archetype within an entity.
    /// include_tombstone_columns : bool, optional
    ///     Whether to include tombstone columns, by default `False`.
    ///
    ///     Tombstone columns are components used to represent clears. However, even without the clear
    ///     tombstone columns, the view will still apply the clear semantics when resolving row contents.
    ///
    /// Returns
    /// -------
    /// RecordingView
    ///     The view of the recording.
    ///
    /// Examples
    /// --------
    /// All the data in the recording on the timeline "my_index":
    /// ```python
    /// recording.view(index="my_index", contents="/**")
    /// ```
    ///
    /// Just the Position3D components in the "points" entity:
    /// ```python
    /// recording.view(index="my_index", contents={"points": "Position3D"})
    /// ```
    #[allow(clippy::fn_params_excessive_bools)]
    #[pyo3(signature = (
        *,
        index,
        contents,
        include_semantically_empty_columns = false,
        include_indicator_columns = false,
        include_tombstone_columns = false,
    ))]
    fn view(
        slf: Bound<'_, Self>,
        index: &str,
        contents: &Bound<'_, PyAny>,
        include_semantically_empty_columns: bool,
        include_indicator_columns: bool,
        include_tombstone_columns: bool,
    ) -> PyResult<PyRecordingView> {
        // TODO(jleibs): We should be able to use this to resolve the timeline / contents
        //let borrowed_self = slf.borrow();

        // TODO(jleibs): Need to get this from the remote schema
        //let timeline = borrowed_self.store.read().resolve_time_selector(&selector);
        let timeline = Timeline::new_sequence(index);

        let contents = Self::extract_contents_expr(contents)?;

        let query = QueryExpression {
            view_contents: Some(contents),
            include_semantically_empty_columns,
            include_indicator_columns,
            include_tombstone_columns,
            filtered_index: Some(timeline),
            filtered_index_range: None,
            filtered_index_values: None,
            using_index_values: None,
            filtered_is_not_null: None,
            sparse_fill_strategy: SparseFillStrategy::None,
            selection: None,
        };

        let recording = slf.unbind();

        Ok(PyRecordingView {
            recording: PyRecordingHandle::Remote(std::sync::Arc::new(recording)),
            query_expression: query,
        })
    }

    /// The recording ID of the recording.
    fn recording_id(&self) -> String {
        self.store_info.store_id.id.as_str().to_owned()
    }

    /// The application ID of the recording.
    fn application_id(&self) -> String {
        self.store_info.application_id.to_string()
    }
}