#[repr(C)]pub struct Mat4 {
pub x_axis: Vec4,
pub y_axis: Vec4,
pub z_axis: Vec4,
pub w_axis: Vec4,
}
Expand description
A 4x4 column major matrix.
This 4x4 matrix type features convenience methods for creating and using affine transforms and
perspective projections. If you are primarily dealing with 3D affine transformations
considering using Affine3A
which is faster than a 4x4 matrix
for some affine operations.
Affine transformations including 3D translation, rotation and scale can be created
using methods such as Self::from_translation()
, Self::from_quat()
,
Self::from_scale()
and Self::from_scale_rotation_translation()
.
Orthographic projections can be created using the methods Self::orthographic_lh()
for
left-handed coordinate systems and Self::orthographic_rh()
for right-handed
systems. The resulting matrix is also an affine transformation.
The Self::transform_point3()
and Self::transform_vector3()
convenience methods
are provided for performing affine transformations on 3D vectors and points. These
multiply 3D inputs as 4D vectors with an implicit w
value of 1
for points and 0
for vectors respectively. These methods assume that Self
contains a valid affine
transform.
Perspective projections can be created using methods such as
Self::perspective_lh()
, Self::perspective_infinite_lh()
and
Self::perspective_infinite_reverse_lh()
for left-handed co-ordinate systems and
Self::perspective_rh()
, Self::perspective_infinite_rh()
and
Self::perspective_infinite_reverse_rh()
for right-handed co-ordinate systems.
The resulting perspective project can be use to transform 3D vectors as points with
perspective correction using the Self::project_point3()
convenience method.
Fields§
§x_axis: Vec4
§y_axis: Vec4
§z_axis: Vec4
§w_axis: Vec4
Implementations§
source§impl Mat4
impl Mat4
sourcepub const IDENTITY: Mat4 = _
pub const IDENTITY: Mat4 = _
A 4x4 identity matrix, where all diagonal elements are 1
, and all off-diagonal elements are 0
.
sourcepub const fn from_cols(
x_axis: Vec4,
y_axis: Vec4,
z_axis: Vec4,
w_axis: Vec4
) -> Mat4
pub const fn from_cols( x_axis: Vec4, y_axis: Vec4, z_axis: Vec4, w_axis: Vec4 ) -> Mat4
Creates a 4x4 matrix from four column vectors.
sourcepub const fn from_cols_array(m: &[f32; 16]) -> Mat4
pub const fn from_cols_array(m: &[f32; 16]) -> Mat4
Creates a 4x4 matrix from a [f32; 16]
array stored in column major order.
If your data is stored in row major you will need to transpose
the returned
matrix.
sourcepub const fn to_cols_array(&self) -> [f32; 16]
pub const fn to_cols_array(&self) -> [f32; 16]
Creates a [f32; 16]
array storing data in column major order.
If you require data in row major order transpose
the matrix first.
sourcepub const fn from_cols_array_2d(m: &[[f32; 4]; 4]) -> Mat4
pub const fn from_cols_array_2d(m: &[[f32; 4]; 4]) -> Mat4
Creates a 4x4 matrix from a [[f32; 4]; 4]
4D array stored in column major order.
If your data is in row major order you will need to transpose
the returned
matrix.
sourcepub const fn to_cols_array_2d(&self) -> [[f32; 4]; 4]
pub const fn to_cols_array_2d(&self) -> [[f32; 4]; 4]
Creates a [[f32; 4]; 4]
4D array storing data in column major order.
If you require data in row major order transpose
the matrix first.
sourcepub const fn from_diagonal(diagonal: Vec4) -> Mat4
pub const fn from_diagonal(diagonal: Vec4) -> Mat4
Creates a 4x4 matrix with its diagonal set to diagonal
and all other entries set to 0.
sourcepub fn from_scale_rotation_translation(
scale: Vec3,
rotation: Quat,
translation: Vec3
) -> Mat4
pub fn from_scale_rotation_translation( scale: Vec3, rotation: Quat, translation: Vec3 ) -> Mat4
Creates an affine transformation matrix from the given 3D scale
, rotation
and
translation
.
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
§Panics
Will panic if rotation
is not normalized when glam_assert
is enabled.
sourcepub fn from_rotation_translation(rotation: Quat, translation: Vec3) -> Mat4
pub fn from_rotation_translation(rotation: Quat, translation: Vec3) -> Mat4
Creates an affine transformation matrix from the given 3D translation
.
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
§Panics
Will panic if rotation
is not normalized when glam_assert
is enabled.
sourcepub fn to_scale_rotation_translation(&self) -> (Vec3, Quat, Vec3)
pub fn to_scale_rotation_translation(&self) -> (Vec3, Quat, Vec3)
Extracts scale
, rotation
and translation
from self
. The input matrix is
expected to be a 3D affine transformation matrix otherwise the output will be invalid.
§Panics
Will panic if the determinant of self
is zero or if the resulting scale vector
contains any zero elements when glam_assert
is enabled.
sourcepub fn from_quat(rotation: Quat) -> Mat4
pub fn from_quat(rotation: Quat) -> Mat4
Creates an affine transformation matrix from the given rotation
quaternion.
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
§Panics
Will panic if rotation
is not normalized when glam_assert
is enabled.
sourcepub fn from_mat3(m: Mat3) -> Mat4
pub fn from_mat3(m: Mat3) -> Mat4
Creates an affine transformation matrix from the given 3x3 linear transformation matrix.
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
sourcepub fn from_mat3a(m: Mat3A) -> Mat4
pub fn from_mat3a(m: Mat3A) -> Mat4
Creates an affine transformation matrix from the given 3x3 linear transformation matrix.
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
sourcepub fn from_translation(translation: Vec3) -> Mat4
pub fn from_translation(translation: Vec3) -> Mat4
Creates an affine transformation matrix from the given 3D translation
.
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
sourcepub fn from_axis_angle(axis: Vec3, angle: f32) -> Mat4
pub fn from_axis_angle(axis: Vec3, angle: f32) -> Mat4
Creates an affine transformation matrix containing a 3D rotation around a normalized
rotation axis
of angle
(in radians).
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
§Panics
Will panic if axis
is not normalized when glam_assert
is enabled.
sourcepub fn from_euler(order: EulerRot, a: f32, b: f32, c: f32) -> Mat4
pub fn from_euler(order: EulerRot, a: f32, b: f32, c: f32) -> Mat4
Creates a affine transformation matrix containing a rotation from the given euler rotation sequence and angles (in radians).
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
sourcepub fn from_rotation_x(angle: f32) -> Mat4
pub fn from_rotation_x(angle: f32) -> Mat4
Creates an affine transformation matrix containing a 3D rotation around the x axis of
angle
(in radians).
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
sourcepub fn from_rotation_y(angle: f32) -> Mat4
pub fn from_rotation_y(angle: f32) -> Mat4
Creates an affine transformation matrix containing a 3D rotation around the y axis of
angle
(in radians).
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
sourcepub fn from_rotation_z(angle: f32) -> Mat4
pub fn from_rotation_z(angle: f32) -> Mat4
Creates an affine transformation matrix containing a 3D rotation around the z axis of
angle
(in radians).
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
sourcepub fn from_scale(scale: Vec3) -> Mat4
pub fn from_scale(scale: Vec3) -> Mat4
Creates an affine transformation matrix containing the given 3D non-uniform scale
.
The resulting matrix can be used to transform 3D points and vectors. See
Self::transform_point3()
and Self::transform_vector3()
.
§Panics
Will panic if all elements of scale
are zero when glam_assert
is enabled.
sourcepub const fn from_cols_slice(slice: &[f32]) -> Mat4
pub const fn from_cols_slice(slice: &[f32]) -> Mat4
Creates a 4x4 matrix from the first 16 values in slice
.
§Panics
Panics if slice
is less than 16 elements long.
sourcepub fn write_cols_to_slice(self, slice: &mut [f32])
pub fn write_cols_to_slice(self, slice: &mut [f32])
Writes the columns of self
to the first 16 elements in slice
.
§Panics
Panics if slice
is less than 16 elements long.
sourcepub fn col_mut(&mut self, index: usize) -> &mut Vec4
pub fn col_mut(&mut self, index: usize) -> &mut Vec4
Returns a mutable reference to the matrix column for the given index
.
§Panics
Panics if index
is greater than 3.
sourcepub fn is_finite(&self) -> bool
pub fn is_finite(&self) -> bool
Returns true
if, and only if, all elements are finite.
If any element is either NaN
, positive or negative infinity, this will return false
.
sourcepub fn determinant(&self) -> f32
pub fn determinant(&self) -> f32
Returns the determinant of self
.
sourcepub fn inverse(&self) -> Mat4
pub fn inverse(&self) -> Mat4
Returns the inverse of self
.
If the matrix is not invertible the returned matrix will be invalid.
§Panics
Will panic if the determinant of self
is zero when glam_assert
is enabled.
sourcepub fn look_to_lh(eye: Vec3, dir: Vec3, up: Vec3) -> Mat4
pub fn look_to_lh(eye: Vec3, dir: Vec3, up: Vec3) -> Mat4
Creates a left-handed view matrix using a camera position, an up direction, and a facing direction.
For a view coordinate system with +X=right
, +Y=up
and +Z=forward
.
sourcepub fn look_to_rh(eye: Vec3, dir: Vec3, up: Vec3) -> Mat4
pub fn look_to_rh(eye: Vec3, dir: Vec3, up: Vec3) -> Mat4
Creates a right-handed view matrix using a camera position, an up direction, and a facing direction.
For a view coordinate system with +X=right
, +Y=up
and +Z=back
.
sourcepub fn look_at_lh(eye: Vec3, center: Vec3, up: Vec3) -> Mat4
pub fn look_at_lh(eye: Vec3, center: Vec3, up: Vec3) -> Mat4
Creates a left-handed view matrix using a camera position, an up direction, and a focal
point.
For a view coordinate system with +X=right
, +Y=up
and +Z=forward
.
§Panics
Will panic if up
is not normalized when glam_assert
is enabled.
sourcepub fn look_at_rh(eye: Vec3, center: Vec3, up: Vec3) -> Mat4
pub fn look_at_rh(eye: Vec3, center: Vec3, up: Vec3) -> Mat4
Creates a right-handed view matrix using a camera position, an up direction, and a focal
point.
For a view coordinate system with +X=right
, +Y=up
and +Z=back
.
§Panics
Will panic if up
is not normalized when glam_assert
is enabled.
sourcepub fn perspective_rh_gl(
fov_y_radians: f32,
aspect_ratio: f32,
z_near: f32,
z_far: f32
) -> Mat4
pub fn perspective_rh_gl( fov_y_radians: f32, aspect_ratio: f32, z_near: f32, z_far: f32 ) -> Mat4
Creates a right-handed perspective projection matrix with [-1,1] depth range.
This is the same as the OpenGL gluPerspective
function.
See https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml
sourcepub fn perspective_lh(
fov_y_radians: f32,
aspect_ratio: f32,
z_near: f32,
z_far: f32
) -> Mat4
pub fn perspective_lh( fov_y_radians: f32, aspect_ratio: f32, z_near: f32, z_far: f32 ) -> Mat4
Creates a left-handed perspective projection matrix with [0,1]
depth range.
§Panics
Will panic if z_near
or z_far
are less than or equal to zero when glam_assert
is
enabled.
sourcepub fn perspective_rh(
fov_y_radians: f32,
aspect_ratio: f32,
z_near: f32,
z_far: f32
) -> Mat4
pub fn perspective_rh( fov_y_radians: f32, aspect_ratio: f32, z_near: f32, z_far: f32 ) -> Mat4
Creates a right-handed perspective projection matrix with [0,1]
depth range.
§Panics
Will panic if z_near
or z_far
are less than or equal to zero when glam_assert
is
enabled.
sourcepub fn perspective_infinite_lh(
fov_y_radians: f32,
aspect_ratio: f32,
z_near: f32
) -> Mat4
pub fn perspective_infinite_lh( fov_y_radians: f32, aspect_ratio: f32, z_near: f32 ) -> Mat4
Creates an infinite left-handed perspective projection matrix with [0,1]
depth range.
§Panics
Will panic if z_near
is less than or equal to zero when glam_assert
is enabled.
sourcepub fn perspective_infinite_reverse_lh(
fov_y_radians: f32,
aspect_ratio: f32,
z_near: f32
) -> Mat4
pub fn perspective_infinite_reverse_lh( fov_y_radians: f32, aspect_ratio: f32, z_near: f32 ) -> Mat4
Creates an infinite left-handed perspective projection matrix with [0,1]
depth range.
§Panics
Will panic if z_near
is less than or equal to zero when glam_assert
is enabled.
sourcepub fn perspective_infinite_rh(
fov_y_radians: f32,
aspect_ratio: f32,
z_near: f32
) -> Mat4
pub fn perspective_infinite_rh( fov_y_radians: f32, aspect_ratio: f32, z_near: f32 ) -> Mat4
Creates an infinite right-handed perspective projection matrix with
[0,1]
depth range.
sourcepub fn perspective_infinite_reverse_rh(
fov_y_radians: f32,
aspect_ratio: f32,
z_near: f32
) -> Mat4
pub fn perspective_infinite_reverse_rh( fov_y_radians: f32, aspect_ratio: f32, z_near: f32 ) -> Mat4
Creates an infinite reverse right-handed perspective projection matrix
with [0,1]
depth range.
sourcepub fn orthographic_rh_gl(
left: f32,
right: f32,
bottom: f32,
top: f32,
near: f32,
far: f32
) -> Mat4
pub fn orthographic_rh_gl( left: f32, right: f32, bottom: f32, top: f32, near: f32, far: f32 ) -> Mat4
Creates a right-handed orthographic projection matrix with [-1,1]
depth
range. This is the same as the OpenGL glOrtho
function in OpenGL.
See
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml
sourcepub fn orthographic_lh(
left: f32,
right: f32,
bottom: f32,
top: f32,
near: f32,
far: f32
) -> Mat4
pub fn orthographic_lh( left: f32, right: f32, bottom: f32, top: f32, near: f32, far: f32 ) -> Mat4
Creates a left-handed orthographic projection matrix with [0,1]
depth range.
sourcepub fn orthographic_rh(
left: f32,
right: f32,
bottom: f32,
top: f32,
near: f32,
far: f32
) -> Mat4
pub fn orthographic_rh( left: f32, right: f32, bottom: f32, top: f32, near: f32, far: f32 ) -> Mat4
Creates a right-handed orthographic projection matrix with [0,1]
depth range.
sourcepub fn project_point3(&self, rhs: Vec3) -> Vec3
pub fn project_point3(&self, rhs: Vec3) -> Vec3
Transforms the given 3D vector as a point, applying perspective correction.
This is the equivalent of multiplying the 3D vector as a 4D vector where w
is 1.0
.
The perspective divide is performed meaning the resulting 3D vector is divided by w
.
This method assumes that self
contains a projective transform.
sourcepub fn transform_point3(&self, rhs: Vec3) -> Vec3
pub fn transform_point3(&self, rhs: Vec3) -> Vec3
Transforms the given 3D vector as a point.
This is the equivalent of multiplying the 3D vector as a 4D vector where w
is
1.0
.
This method assumes that self
contains a valid affine transform. It does not perform
a perspective divide, if self
contains a perspective transform, or if you are unsure,
the Self::project_point3()
method should be used instead.
§Panics
Will panic if the 3rd row of self
is not (0, 0, 0, 1)
when glam_assert
is enabled.
sourcepub fn transform_vector3(&self, rhs: Vec3) -> Vec3
pub fn transform_vector3(&self, rhs: Vec3) -> Vec3
Transforms the give 3D vector as a direction.
This is the equivalent of multiplying the 3D vector as a 4D vector where w
is
0.0
.
This method assumes that self
contains a valid affine transform.
§Panics
Will panic if the 3rd row of self
is not (0, 0, 0, 1)
when glam_assert
is enabled.
sourcepub fn transform_point3a(&self, rhs: Vec3A) -> Vec3A
pub fn transform_point3a(&self, rhs: Vec3A) -> Vec3A
sourcepub fn transform_vector3a(&self, rhs: Vec3A) -> Vec3A
pub fn transform_vector3a(&self, rhs: Vec3A) -> Vec3A
sourcepub fn mul_scalar(&self, rhs: f32) -> Mat4
pub fn mul_scalar(&self, rhs: f32) -> Mat4
Multiplies a 4x4 matrix by a scalar.
sourcepub fn div_scalar(&self, rhs: f32) -> Mat4
pub fn div_scalar(&self, rhs: f32) -> Mat4
Divides a 4x4 matrix by a scalar.
sourcepub fn abs_diff_eq(&self, rhs: Mat4, max_abs_diff: f32) -> bool
pub fn abs_diff_eq(&self, rhs: Mat4, max_abs_diff: f32) -> bool
Returns true if the absolute difference of all elements between self
and rhs
is less than or equal to max_abs_diff
.
This can be used to compare if two matrices contain similar elements. It works best
when comparing with a known value. The max_abs_diff
that should be used used
depends on the values being compared against.
For more see comparing floating point numbers.
pub fn as_dmat4(&self) -> DMat4
Trait Implementations§
source§impl AddAssign for Mat4
impl AddAssign for Mat4
source§fn add_assign(&mut self, rhs: Mat4)
fn add_assign(&mut self, rhs: Mat4)
+=
operation. Read moresource§impl<'de> Deserialize<'de> for Mat4
impl<'de> Deserialize<'de> for Mat4
source§fn deserialize<D>(
deserializer: D
) -> Result<Mat4, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D
) -> Result<Mat4, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
source§impl DivAssign<f32> for Mat4
impl DivAssign<f32> for Mat4
source§fn div_assign(&mut self, rhs: f32)
fn div_assign(&mut self, rhs: f32)
/=
operation. Read moresource§impl MulAssign<f32> for Mat4
impl MulAssign<f32> for Mat4
source§fn mul_assign(&mut self, rhs: f32)
fn mul_assign(&mut self, rhs: f32)
*=
operation. Read moresource§impl MulAssign for Mat4
impl MulAssign for Mat4
source§fn mul_assign(&mut self, rhs: Mat4)
fn mul_assign(&mut self, rhs: Mat4)
*=
operation. Read moresource§impl Serialize for Mat4
impl Serialize for Mat4
source§fn serialize<S>(
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
fn serialize<S>(
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
source§impl SubAssign for Mat4
impl SubAssign for Mat4
source§fn sub_assign(&mut self, rhs: Mat4)
fn sub_assign(&mut self, rhs: Mat4)
-=
operation. Read moreimpl Copy for Mat4
impl Pod for Mat4
Auto Trait Implementations§
impl Freeze for Mat4
impl RefUnwindSafe for Mat4
impl Send for Mat4
impl Sync for Mat4
impl Unpin for Mat4
impl UnwindSafe for Mat4
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CheckedAs for T
impl<T> CheckedAs for T
source§fn checked_as<Dst>(self) -> Option<Dst>where
T: CheckedCast<Dst>,
fn checked_as<Dst>(self) -> Option<Dst>where
T: CheckedCast<Dst>,
§impl<T> CheckedBitPattern for Twhere
T: AnyBitPattern,
impl<T> CheckedBitPattern for Twhere
T: AnyBitPattern,
§type Bits = T
type Bits = T
Self
must have the same layout as the specified Bits
except for
the possible invalid bit patterns being checked during
is_valid_bit_pattern
.§fn is_valid_bit_pattern(_bits: &T) -> bool
fn is_valid_bit_pattern(_bits: &T) -> bool
bits
as &Self
.source§impl<Src, Dst> CheckedCastFrom<Src> for Dstwhere
Src: CheckedCast<Dst>,
impl<Src, Dst> CheckedCastFrom<Src> for Dstwhere
Src: CheckedCast<Dst>,
source§fn checked_cast_from(src: Src) -> Option<Dst>
fn checked_cast_from(src: Src) -> Option<Dst>
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.§impl<T> DowncastSync for T
impl<T> DowncastSync for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request