pub struct CubicBezierShape {
pub points: [Pos2; 4],
pub closed: bool,
pub fill: Color32,
pub stroke: PathStroke,
}
Expand description
A cubic Bézier Curve.
See also QuadraticBezierShape
.
Fields§
§points: [Pos2; 4]
The first point is the starting point and the last one is the ending point of the curve. The middle points are the control points.
closed: bool
§fill: Color32
§stroke: PathStroke
Implementations§
§impl CubicBezierShape
impl CubicBezierShape
pub fn from_points_stroke(
points: [Pos2; 4],
closed: bool,
fill: Color32,
stroke: impl Into<PathStroke>,
) -> CubicBezierShape
pub fn from_points_stroke( points: [Pos2; 4], closed: bool, fill: Color32, stroke: impl Into<PathStroke>, ) -> CubicBezierShape
Creates a cubic Bézier curve based on 4 points and stroke.
The first point is the starting point and the last one is the ending point of the curve. The middle points are the control points.
pub fn transform(&self, transform: &RectTransform) -> CubicBezierShape
pub fn transform(&self, transform: &RectTransform) -> CubicBezierShape
Transform the curve with the given transform.
pub fn to_path_shapes(
&self,
tolerance: Option<f32>,
epsilon: Option<f32>,
) -> Vec<PathShape>
pub fn to_path_shapes( &self, tolerance: Option<f32>, epsilon: Option<f32>, ) -> Vec<PathShape>
Convert the cubic Bézier curve to one or two PathShape
’s.
When the curve is closed and it has to intersect with the base line, it will be converted into two shapes.
Otherwise, it will be converted into one shape.
The tolerance
will be used to control the max distance between the curve and the base line.
The epsilon
is used when comparing two floats.
pub fn visual_bounding_rect(&self) -> Rect
pub fn visual_bounding_rect(&self) -> Rect
The visual bounding rectangle (includes stroke width)
pub fn logical_bounding_rect(&self) -> Rect
pub fn logical_bounding_rect(&self) -> Rect
Logical bounding rectangle (ignoring stroke width)
pub fn split_range(&self, t_range: Range<f32>) -> CubicBezierShape
pub fn split_range(&self, t_range: Range<f32>) -> CubicBezierShape
split the original cubic curve into a new one within a range.
pub fn num_quadratics(&self, tolerance: f32) -> u32
pub fn find_cross_t(&self, epsilon: f32) -> Option<f32>
pub fn find_cross_t(&self, epsilon: f32) -> Option<f32>
Find out the t value for the point where the curve is intersected with the base line. The base line is the line from P0 to P3. If the curve only has two intersection points with the base line, they should be 0.0 and 1.0. In this case, the “fill” will be simple since the curve is a convex line. If the curve has more than two intersection points with the base line, the “fill” will be a problem. We need to find out where is the 3rd t value (0<t<1) And the original cubic curve will be split into two curves (0.0..t and t..1.0). B(t) = (1-t)^3P0 + 3t*(1-t)^2P1 + 3t^2*(1-t)P2 + t^3P3 or B(t) = (P3 - 3P2 + 3P1 - P0)t^3 + (3P2 - 6P1 + 3P0)t^2 + (3P1 - 3*P0)*t + P0 this B(t) should be on the line between P0 and P3. Therefore: (B.x - P0.x)/(P3.x - P0.x) = (B.y - P0.y)/(P3.y - P0.y), or: B.x * (P3.y - P0.y) - B.y * (P3.x - P0.x) + P0.x * (P0.y - P3.y) + P0.y * (P3.x - P0.x) = 0 B.x = (P3.x - 3 * P2.x + 3 * P1.x - P0.x) * t^3 + (3 * P2.x - 6 * P1.x + 3 * P0.x) * t^2 + (3 * P1.x - 3 * P0.x) * t + P0.x B.y = (P3.y - 3 * P2.y + 3 * P1.y - P0.y) * t^3 + (3 * P2.y - 6 * P1.y + 3 * P0.y) * t^2 + (3 * P1.y - 3 * P0.y) * t + P0.y Combine the above three equations and iliminate B.x and B.y, we get:
t^3 * ( (P3.x - 3*P2.x + 3*P1.x - P0.x) * (P3.y - P0.y) - (P3.y - 3*P2.y + 3*P1.y - P0.y) * (P3.x - P0.x))
+ t^2 * ( (3 * P2.x - 6 * P1.x + 3 * P0.x) * (P3.y - P0.y) - (3 * P2.y - 6 * P1.y + 3 * P0.y) * (P3.x - P0.x))
+ t^1 * ( (3 * P1.x - 3 * P0.x) * (P3.y - P0.y) - (3 * P1.y - 3 * P0.y) * (P3.x - P0.x))
+ (P0.x * (P3.y - P0.y) - P0.y * (P3.x - P0.x)) + P0.x * (P0.y - P3.y) + P0.y * (P3.x - P0.x)
= 0
or a * t^3 + b * t^2 + c * t + d = 0
let x = t - b / (3 * a), then we have:
x^3 + p * x + q = 0, where:
p = (3.0 * a * c - b^2) / (3.0 * a^2)
q = (2.0 * b^3 - 9.0 * a * b * c + 27.0 * a^2 * d) / (27.0 * a^3)
when p > 0, there will be one real root, two complex roots
when p = 0, there will be two real roots, when p=q=0, there will be three real roots but all 0.
when p < 0, there will be three unique real roots. this is what we need. (x1, x2, x3)
t = x + b / (3 * a), then we have: t1, t2, t3.
the one between 0.0 and 1.0 is what we need.
<https://baike.baidu.com/item/%E4%B8%80%E5%85%83%E4%B8%89%E6%AC%A1%E6%96%B9%E7%A8%8B/8388473 /
>
pub fn sample(&self, t: f32) -> Pos2
pub fn sample(&self, t: f32) -> Pos2
Calculate the point (x,y) at t based on the cubic Bézier curve equation. t is in [0.0,1.0] Bézier Curve
pub fn flatten(&self, tolerance: Option<f32>) -> Vec<Pos2>
pub fn flatten(&self, tolerance: Option<f32>) -> Vec<Pos2>
find a set of points that approximate the cubic Bézier curve. the number of points is determined by the tolerance. the points may not be evenly distributed in the range [0.0,1.0] (t value)
pub fn flatten_closed(
&self,
tolerance: Option<f32>,
epsilon: Option<f32>,
) -> Vec<Vec<Pos2>>
pub fn flatten_closed( &self, tolerance: Option<f32>, epsilon: Option<f32>, ) -> Vec<Vec<Pos2>>
find a set of points that approximate the cubic Bézier curve. the number of points is determined by the tolerance. the points may not be evenly distributed in the range [0.0,1.0] (t value) this api will check whether the curve will cross the base line or not when closed = true. The result will be a vec of vec of Pos2. it will store two closed aren in different vec. The epsilon is used to compare a float value.
Trait Implementations§
§impl Clone for CubicBezierShape
impl Clone for CubicBezierShape
§fn clone(&self) -> CubicBezierShape
fn clone(&self) -> CubicBezierShape
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read more§impl Debug for CubicBezierShape
impl Debug for CubicBezierShape
§impl<'de> Deserialize<'de> for CubicBezierShape
impl<'de> Deserialize<'de> for CubicBezierShape
§fn deserialize<__D>(
__deserializer: __D,
) -> Result<CubicBezierShape, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(
__deserializer: __D,
) -> Result<CubicBezierShape, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
§impl From<CubicBezierShape> for Shape
impl From<CubicBezierShape> for Shape
§fn from(shape: CubicBezierShape) -> Shape
fn from(shape: CubicBezierShape) -> Shape
§impl PartialEq for CubicBezierShape
impl PartialEq for CubicBezierShape
§fn eq(&self, other: &CubicBezierShape) -> bool
fn eq(&self, other: &CubicBezierShape) -> bool
self
and other
values to be equal, and is used
by ==
.§impl Serialize for CubicBezierShape
impl Serialize for CubicBezierShape
§fn serialize<__S>(
&self,
__serializer: __S,
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
fn serialize<__S>(
&self,
__serializer: __S,
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
impl StructuralPartialEq for CubicBezierShape
Auto Trait Implementations§
impl Freeze for CubicBezierShape
impl !RefUnwindSafe for CubicBezierShape
impl Send for CubicBezierShape
impl Sync for CubicBezierShape
impl Unpin for CubicBezierShape
impl !UnwindSafe for CubicBezierShape
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CheckedAs for T
impl<T> CheckedAs for T
source§fn checked_as<Dst>(self) -> Option<Dst>where
T: CheckedCast<Dst>,
fn checked_as<Dst>(self) -> Option<Dst>where
T: CheckedCast<Dst>,
source§impl<Src, Dst> CheckedCastFrom<Src> for Dstwhere
Src: CheckedCast<Dst>,
impl<Src, Dst> CheckedCastFrom<Src> for Dstwhere
Src: CheckedCast<Dst>,
source§fn checked_cast_from(src: Src) -> Option<Dst>
fn checked_cast_from(src: Src) -> Option<Dst>
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.§impl<T> DowncastSync for T
impl<T> DowncastSync for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request